Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Agriculture (Pol'nohospodárstvo)

The Journal of National Agricultural and Food Centre

4 Issues per year

CiteScore 2016: 0.59

SCImago Journal Rank (SJR) 2016: 0.196
Source Normalized Impact per Paper (SNIP) 2016: 0.360

Open Access
See all formats and pricing
More options …

Post-Transcriptional Gene Silencing Conferred by the Ectopic Expression of the Grapevine miRNA-g1 and Inhibition of the Response by Anti-miRNA-g1 Inhibitor

Vladimír Repka / Mária Čarná
Published Online: 2011-12-25 | DOI: https://doi.org/10.2478/v10207-011-0014-z

Post-Transcriptional Gene Silencing Conferred by the Ectopic Expression of the Grapevine miRNA-g1 and Inhibition of the Response by Anti-miRNA-g1 Inhibitor

Our results show that a subset (miRNA cluster 1) of grapevine (Vitis vinifera L., cv. Limberger) microRNAs (miRNAs) can be strongly induced by different apoptosis inducers including methyl jasmonate (MeJA), botrycin, cinerein and/or H2O2. We report here that the expression of endogenous miRNA-g1 and miRNA-g7 can be efficiently silenced in grapevine protoplasts using artificial miRNA (amiRNA) technology. Furthermore, we demonstrate that the ectopic expression of amiRNAs (anti-mir miRNA-g1 and pre-mir miRNA-g1) designed to target a mature miRNA-g1 directs jasmonate-induced silencing against DAD1 protein (defender against death 1). These collective results strongly support the idea that a sub-population of grapevine miRNAs induced by apoptosis may function in one of the most critical defense systems for structural and mechanical fitness.

Keywords: Vitis vinifera L.; small RNA; gene silencing; protoplast; cell death; methyl jasmonate

  • ALVAREZ, J. P. - PEKKER, I. - GOLDSHMIDT, A. - BLUM, E. - AMSELLEM, Z. - ESHED, Y. 2006. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. In Plant Cell, vol. 18, 2006, no. 5, pp. 1134-1151, DOI: 10.1105/tpc.105.040725CrossrefGoogle Scholar

  • BERNSTEIN, E. - CAUDY, A. A. - HAMMOND, S. M. - HANNON, G. J. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. In Nature, vol. 409, 2001, no. 6818, pp. 363-366.Google Scholar

  • BONNET, E. - HE, Y. - BILLIAU, K. - VAN DE PEER, Y. 2010. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. In Bioinformatics, vol. 12, 2010, no. 26, pp. 1566-8, DOI: 10.1093/bioinformatics/btq233CrossrefGoogle Scholar

  • BRENNECKE, J. - HIPFNER, D. R. - STARK, A. - RUSSELL, R. B. - COHEN, S. M. 2003. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. In Cell, vol. 113, 2003, no. 1, pp. 25-36.Google Scholar

  • CHAPMAN, E. J. - PROKHNEVSKY, A. I. - GOPINATH, K. - DOLJA, V. V. - CARRINGTON, J. C. 2004. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. In Genes & Development, vol. 18, 2004, no. 10, pp. 1179-1186.Google Scholar

  • CHEN, X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. In Science, vol. 303, 2004, no. 5666, pp. 2022-2025, DOI: 10.1126/science.1088060CrossrefGoogle Scholar

  • CHIOU, T. J. - AUNG, K. - LIN, S. I. - WU, C. C. - CHIANG, S. F. - SU, C. L. 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. In Plant Cell, vol. 18, 2006, no. 2, pp. 412-421, DOI: 10.1105/tpc.105.038943CrossrefGoogle Scholar

  • ELBASHIR, S. M. - LENDECKEL, W. - TUSCHL, T. 2001. RNA interference is mediated by 21 and 22 nt RNAs. In Genes & Development, vol. 15, 2001, no. 2, pp. 188-200.Google Scholar

  • FAHLGREN, N. - HOWELL, M. D. - KASSCHAU, K. D. - CHAPMAN, E. J. - SULLIVAN, C. M. - CUMBIE, J. S. - GIVAN, S. A. - LAW, T. F. - GRANT, S. R. - DANGL, J. L. - CARRINGTON, J. C. 2007. High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of miRNA genes. In The Public Library of Science, vol. 2, 2007, no. 2, pp. 219, DOI: 10.1371/journal.pone.0000219CrossrefGoogle Scholar

  • FIRE, A. - XU, S. - MONTGOMERY, M. K. - KOSTAS, S. A. - DRIVER, S. E. - MELLO, C. C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. In Nature, vol. 391, 1998, pp. 806-811, DOI: 10.1038/35888CrossrefGoogle Scholar

  • FRIZZI, A. - HUANG, S. 2010. Tapping RNA silencing pathways for plant biotechnology. In Plant Biotechnology Jurnal, vol. 8, 2010, no. 6, pp. 655-677, DOI: 10.1111/j.1467-7652.2010.00505.xCrossrefGoogle Scholar

  • FUJII, H. - CHIOU, T. J. - LIN, S. I. - AUNG, K. - ZHU, J. K. 2005. A miRNA involved in phosphate-starvation response in Arabidopsis. In Current Biology, vol. 15, 2005, no. 22, pp. 2038-2043.Google Scholar

  • GURR, S. J. - RUSHTON, P. J. 2005. Engineering plants with increased disease resistance: What are we going to express? In Trends in Biotechnology, vol. 23, 2005, no. 6, pp. 275-282.Google Scholar

  • HAMILTON, A. J. - BAULCOMBE, D. C. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. In Science, vol. 286, 1999, no. 5441, pp. 950-952.Google Scholar

  • JONES-RHOADES, M. W. - BARTEL, D. P. 2004. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. In Molecular Cell, vol. 14, 2004, no. 6, pp. 787-799.Google Scholar

  • KASSCHAU, K. D. - XIE, Z. - ALLEN, E. - LLAVE, C. - CHAPMAN, E. J. - KRIZAN, K. A. - CARRINGTON, J. C. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. In Developmental Cell, vol. 4, 2003, no. 2, pp. 205-217.Google Scholar

  • KELLEHER, D. J. - GILMORE, R. 1997. DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. In Proceedings of the National Academy of Science of the USA, vol. 94, 1997, no. 10, pp. 4994-4999.Google Scholar

  • MAKISHIMA, T. - NAKASHIMA, T. - NAGATA-KUNO, K. - FUKUSHIMA, K. - IIDA, H. - SAKAGUCHI, M. - IKEHARA, Y. - KOMIYAMA, S. - NISHIMOTO, T. 1997. The highly conserved DAD1 protein involved in apoptosis is required for N-linked glycosylation. In Genes Cells, vol. 2, 1997, no. 2, pp. 129-141, DOI: 10.1046/j.1365-2443.1997.1070303.xCrossrefGoogle Scholar

  • MALLORY, A. C. - VAUCHERET, H. 2006. Functions of microRNAs and related small RNAs in plants. In Nature Genetics, vol. 38, 2006, no. 7, pp. 31-36.Google Scholar

  • NAKASHIMA, T. - SEKIGUCHI, T. - KURAOKA, A. - FUKUSHIMA, K. - SHIBATA, Y. - KOMIYAMA, S. 1993. Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. In Molecular and Celularl Biology, vol. 13, 1993, no. 10, pp. 6367-6374.Google Scholar

  • NAVARRO, B. - RUSSO, M. - PANTALEO, V. - RUBINO, L. 2006. Cytological analysis of Saccharomyces cerevisiae cells supporting cymbidium ringspot virus defective interfering RNA replication. In Journal of General Virology, vol. 87, 2006, no. 3, pp. 705-714.Google Scholar

  • QIN, Y. - DUAN, Z. - XIA, X. - YIN, W. 2011. Expression profiles of precursor and mature microRNAsunder dehydration and high salinity shock in Populus euphratica. In Plant Cell Reports, vol. 30, 2011, no. 5, pp. 1893-1907, DOI: 10.1007/s00299-011-1096-9CrossrefGoogle Scholar

  • REPKA, V. 2008. Grapevine (Vitis vinifera L.) microRNA expression profiling with miRNA bioarrays: indications for an involvement of miRNA in apoptosis and pathogenesis. In Le Bulletin de L'OIV, vol. 81, 2008, no. 926-927-928, pp. 171-178.Google Scholar

  • REPKA, V. - FISHEROVÁ, I. - ŠILHÁROVÁ, K. 2004. Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell-suspension cultures. In Biologia Plantarum, vol. 48, 2004, no. 2, pp. 273-283, DOI: 10.1023/B:BIOP.0000033456.27521.e5CrossrefGoogle Scholar

  • REPKA, V. - FISHEROVÁ, I. - ŠILHÁROVÁ, K. 2001. Biological activity of the elicitor released from mycelium of a grapevine isolate of the necrotrophic fungus Botrytis cinerea. In Vitis, vol. 40, 2001, no. 4, pp. 205-212.Google Scholar

  • REPKA, V. 2001. Elicitor-stimulated induction of defense mechanisms and defense gene activation in grapevine cell suspension cultures. In Biologia Plantarum, vol. 44, 2001, no. 4, pp. 555-565, DOI: 10.1023/A:1013742703929CrossrefGoogle Scholar

  • REPKA, V. - KUBÍKOVÁ, J. - FISHEROVÁ, I. 2000. Immunodetection of PR-1-like proteins in grapevine leaves infected with Oidium tuckerii and in elicited suspension cell cultures. In Vitis, vol. 39, 2000, no. 3, pp. 123-127.Google Scholar

  • REPKA, V. - FISHEROVÁ, I. - ČANIGOVÁ, K. 1996. Expression of cucumber stress-related anionic peroxidases during flower development or a cryptic infective process. In Biologia. Plantarum., vol. 38, 1996, no.4, pp. 585-596.Google Scholar

  • SCHWAB, R. - OSSOWSKI, S. - RIESTER, M. - WARTHMANN, N. - WEIGEL, D. 2006. Highly specific gene silencing by artificial microRNAs in Arabidopsis. In Plant Cell, vol. 18, 2006, no. 5, pp. 1121-1133, DOI: 10.1105/tpc.105.03983CrossrefGoogle Scholar

  • SHEN, J. - XIE, K. - XIONG, L. 2010. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. In Molecular Genetics & Genomics, vol. 284, 2010, no. 2, pp. 477-488.Web of ScienceGoogle Scholar

  • SUNKAR, R. - CHINNUSAMY, V. - ZHU, J. H. - ZHU, J. K. 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. In Trends in Plant Science, vol. 12, 2007, no. 7, pp. 301-309.Google Scholar

  • VANCE, V. - VAUCHERET, H. 2001. RNA silencing in plants-defense and counterdefense. In Science, vol. 292, 2001, no. 5525, pp. 2277-2280.Google Scholar

About the article

Published Online: 2011-12-25

Published in Print: 2011-12-01

Citation Information: Agriculture, Volume 57, Issue 4, Pages 137–143, ISSN (Online) 1338-4376, ISSN (Print) 0551-3677, DOI: https://doi.org/10.2478/v10207-011-0014-z.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in