Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Agriculture (Pol'nohospodárstvo)

The Journal of National Agricultural and Food Centre

4 Issues per year


CiteScore 2016: 0.59

SCImago Journal Rank (SJR) 2016: 0.196
Source Normalized Impact per Paper (SNIP) 2016: 0.360

Open Access
Online
ISSN
1338-4376
See all formats and pricing
More options …

Soil Structure and Soil Organic Matter of Selected Soil Types in Different Ecosystems

doc. Ing. Erika Tobiašová PhD.
  • Corresponding author
  • Slovak University of Agriculture in Nitra, Department of Soil Science, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimír Šimanský / Bożena Dębska / Magdalena Banach-Szott
Published Online: 2013-04-12 | DOI: https://doi.org/10.2478/agri-2013-0001

In this study, differences in soil structure in different ecosystems (forest, meadow, urban, and agro-ecosystem) and soil types (Haplic Chernozem, Haplic Luvisol, Haplic Stagnosol) with a dependence on the influence of quantity and quality of soil organic matter and the particle size distribution on fraction composition of soil aggregates were compared. Soils had different productive capacity and particle size distribution. The most favourable soil structure was in the agro-ecosystem, then in forest, meadow, and urban ecosystem. The worst soil structure was in Haplic Stagnosol. An important indicator in assessing of ecosystem influence, water-resistant macro-aggregates of the 0.5-1 mm size fraction seems to be. This fraction was the only one which was statistically significantly influenced by the ecosystem, and also the only one which was not statistically significantly influenced by the soil type. This fraction also was not influenced either with the quantity and quality of soil organic matter, or with the particle size distribution. The quantity of soil organic matter is reflected in relation to the fractional composition of dry-sieved aggregates and its quality in relation to waterresistant aggregates. Large fractions of water-resistant macro-aggregates were in positive correlation with C : N ratio, the amount of extracted humus substances, or stability and quality of humic acids; while smaller fractions were in negative correlation just with these parameters. Clay and silt fractions had a positive influence on waterresistant macro-aggregates formation, while sand fraction had negative and vice versa.

Keywords: soil organic matter; soil structure; ecosystem

  • Amelung , W. - Zeech , W. - Zhang , X. - Follett , H. - Tiessen , E. - Knox , E. - Flach , W. 1998. Carbon, nitrogen and sulfur pools in particlesize fractions as influenced by climate. In Soil ScienceSociety of America Journal, vol. 62, 1998, no. 1, pp. 172-181. DOI:10.2136/sssaj1998.0361599500 6200010023x CrossrefGoogle Scholar

  • Balabane , M. - Plante , A.F. 2004. Aggregation and carbon storage in silty soil using physical fractionation techniques. In European Journalof Soil Science, vol. 55, 2004, no. 2, pp. 415-427. DOI: 10.1111/j.1351-0754.2004.0608.x CrossrefGoogle Scholar

  • Bhattachar yya, R. - Prakash , V. - Kundu , S. - Srivastva , A.K. - Gupta , H.S. 2009. Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas under different tillage and crop regimes. In Agriculture Ecosystem and Environment, vol. 132, no. 1-2, 2009, pp. 126-134.Google Scholar

  • Bonde , T.A. - Schn Ürer , J. - Rosswall , T. 1988. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. In Soil Biology and Biochemistry, vol. 20, 1988, no. 4, pp. 447-452.Google Scholar

  • Debosz , K. - Peterson , S.O. - Kure , L.K. - Ambus , P. 2002. Evaluating effects on sewage sludge and household compost on soil physical, chemical and microbiological properties. In ApliedSoil Ecology, vol. 19, 2002, pp. 237-48.Google Scholar

  • Duiker , S.W. - Rhoton , F.E. - Torrent , J. - Smeck , N.E. - Lal , R. 2003. Iron (hydr)oxide crystallinity effects on soil aggregation. In SoilScience Society of America Journal, vol. 67, 2003, no. 2, pp. 606-611. DOI:10.2136/sssaj2003.6060 CrossrefGoogle Scholar

  • Emadi , M. - Baghernejad , M. - Memarian , H.R. 2009. Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. In Land Use Policy, vol. 26, 2009, no. 2, pp. 452-457.Google Scholar

  • FIALA, K. - KOBZA, J. - MATÚŠKOVÁ, Ľ. - BREČKOVÁ, V. - MAKOVNÍKOVÁ, J. - BARANČÍKOVÁ, G. - BÚRIK, V. - LITAVEC, T. - HOUŠKOVÁ, B. - CHROMANIČOVÁ, A. - VÁRADIOVÁ, D. - PECHOVÁ, B. 1999. Záväzné metódy rozborov pôd. Čiastkovýmonitorovací system - PôDA [Approved methods ofsoil analyses. Partial monitoring system - Soil] Bratislava : VÚPOP, 1999. pp. 142.Google Scholar

  • FAO. 1979. Soil Survey Investigation for Irrigation. Rome : FAO, 1979. pp.188.Google Scholar

  • HENIN, S. - GRAS, R. - JUNGERIUS, P.D. 1969. Le profilcultural: I´état psysique du so let ses consequencesagronomiques. Paris : Masson, 1969. pp. 322.Google Scholar

  • HÓK, J. - KAHAN, Š. - AUBRECHT, R. 2001. Geologyof Slovakia. Bratislava : UK, 2001. 48 pp. ISBN 80-223-1592-3 Google Scholar

  • IUSS Working Group WRB. 2006. World reference basefor soil resources. 2006. World Soil Resources ReportsNo. 103, Roma : FAO, pp. 145.Google Scholar

  • Jastrow , J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. In Soil Biology and Biochemistry, vol. 28, 1996, no. 4-5, pp. 665-676.Google Scholar

  • KOREC, P. - LAUKO, V. - TOLMÁČI, L. - ZUBRICKÝ, G. - MIČIETOVÁ, E. 1997. Kraje a okresy Slovenska. Nové administratívne členenie [Counties and districsof Slovakia]. Bratislava : Q111, 1997. 387 pp.Google Scholar

  • Magill , A.H. - Aber , J.D. 1998. Long-term effects of experimental nitrogen additions on foliar decay and humus formation in forest ecosystems. In Plant Soil, vol. 203, 1998, pp. 301-311.Google Scholar

  • Martens , A.D. 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. In Soil Biology and Biochemistry, vol. 32, 2000, no. 3, pp. 361-369.Google Scholar

  • Pieri , C. 1991. Fertility of soils: A future for farming in the West African savannah. Berlin : Springer-Verlag, 1991. pp. 348.Google Scholar

  • ORLOV, D.S. - GRIŠINA, L.A. 1981. Praktikum po chimijigumusa. Moskva : IMU, 1981. 272 pp.Google Scholar

  • PRISTAŠ, J. - ELEČKO, M. - MAGLAY, J. - FORDINÁL, K. - ŠIMON, L. - GROSS, P. - POLÁK, M. - HAVRILA, M. - IVANIČKA, J. - HATÁR, J. - VOZÁR, J. - MELLO, J. - NAGY, A. 2000. Geologická mapaPodunajskej nížiny - Nitrianska pahorkatina 1:50000 [Geological map of Danube Lowland - Nitra hillyarea]. Bratislava : Ministry of environment SR, State geological institute of Dionyz Stur, 2000.Google Scholar

  • Singh , S. - Singh , J.S. 1996. Water-stable aggregates and associated organic mater in forest, savanna, and cropland soils of a seasonally dry tropical region. In Indian Biological Fertility of Soils, vol. 22, 1996, pp. 76-82.Google Scholar

  • SISÁK, P. 1994. Study the effect of different management systems on composition of micro-aggregates and waterresistant macro-aggregates of Haplic Luvisol. In Newsabout increasing of productive ability of soils. Nitra : VŠP - VÚPÚ, 1994. pp. 53-56.Google Scholar

  • Six , J. - Guggenberger , G. - Paustian , K. - Hau - maier , L. - Elliot , E.T. - Zech , W. 2001. Sources and composition of soil organic matter fractions between and within soil aggregates. In European Journalof Soil Science, vol. 52, 2001, no. 4, pp. 607-618. DOI: 10.1046/j.1365-2389.2001.00406.x CrossrefGoogle Scholar

  • Sohi , S.P. - Mahieu , N. - Arah , J.R.M. - Powl - son , D.S. - Madari , B. - Gaunt , J.L. 2001. A procedure for isolating soil organic matter fractions for modeling. In Soil Science Society of America Journal, vol. 65, 2001, no. 4, pp. 1121-1128. DOI:10.2136/ sssaj2001.6541121x CrossrefGoogle Scholar

  • Šajgalík , J. - čabalová , D. - Schütznerová , v. - šamalíková , m. - zeman , o. 1986. Geológia [Geology]. Bratislava - Praha : ALFA - SNTL, 1986. 563 pp.Google Scholar

  • Tisdall , J.M. - Oades , J.M. 1982. Organic matter and water stable aggregates in soils. In Journal of Soil Science, vol. 33, 1982, no. 2, pp. 141-163. DOI: 10.1111/ j.1365-2389.1982.tb01755.x CrossrefGoogle Scholar

  • Tobiašová , E. 2011a. The effect of organic matter on the structure of soils of different land use. In Soil andTillage Research, vol. 114, 2011, pp. 183-192.Google Scholar

  • Tobiašová , E. 2011b. Land use influence on micro-aggregates. In Folia Oecologica, vol. 38, 2011, no. 1, pp. 126-132.Google Scholar

  • Tornquist , C.G. - Mielniczuk , J. - Cerri , C.E.P. 2009. Modeling soil organic carbon dynamics in Oxisols of Ibiruba´ (Brazil) with the Century Model. In Soil andTillage Research, vol. 105, 2009, no. 1, pp. 33-43.Google Scholar

  • Valla , M. - Kozák J. - Ondráček V. 2000. Vulnerability of aggregates separated from selected anthorsols developed on reclaimed dumpsites. In Rostlinávýroba, vol. 46, 2000, pp. 563-568.Google Scholar

  • Vrščaj , B. - Poggio , L. - Marsan , F.A. 2009. A method for soil environmental quality evaluation for management and planning in urban areas. In Landscapeand Urban Planning, vol. 88, 2008, pp. 81-94.Google Scholar

  • Whalen , J.K. - Chang , C. 2002. Macroaggregate characteristics in cultivated soils after 25 annual manure applications. In Soil Science Society of America Journal, vol. 66, 2002, no. 5, pp. 1637-1647. DOI:10.2136/ sssaj2002.1637 CrossrefGoogle Scholar

  • Zeytin , S. - Baran , A. 2003. Influences of composted hazelnut husk on some physical properties of soils. In Bioresource Technology, vol. 88, 2003, pp. 241-244.Google Scholar

About the article

Published Online: 2013-04-12

Published in Print: 2013-03-01


Citation Information: Agriculture, Volume 59, Issue 1, Pages 1–8, ISSN (Online) 1338-4376, ISSN (Print) 0551-3677, DOI: https://doi.org/10.2478/agri-2013-0001.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in