Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Agriculture (Pol'nohospodárstvo)

The Journal of National Agricultural and Food Centre

4 Issues per year

CiteScore 2016: 0.59

SCImago Journal Rank (SJR) 2016: 0.196
Source Normalized Impact per Paper (SNIP) 2016: 0.360

Open Access
See all formats and pricing
More options …

Interaction of Salinity and Phytohormones on Wheat Photosynthetic Traits and Membrane Stability

Arman Pazuki / Mohammad Sedghi / Fatemeh Aflaki
  • Corresponding author
  • Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-12 | DOI: https://doi.org/10.2478/agri-2013-0004

To evaluate phytohormones effects on stomatal conductance, chlorophyll fluorescence, membrane stability, relative water content and chlorophyll content under salinity, a factorial experiment with 4 replicates was conducted. Treatments were salinity (0, 3.5 and 7 dS/m), phytohormones (control, gibberellic acid and abscisic acid) and wheat cultivars (Gascogen, Zagros, and Kuhdasht). Results showed that a high level of salinity increased chlorophyll fluorescence and relative water content, while membrane stability, chlorophyll content, and stomatal conductance were decreased. Abscisic acid treatment had more effective role in membrane stability. Although membrane stability was much more under gibberellic acid treatment, restoration of membrane stability was considerable under abscisic acid treatment for Gascogen and Kuhdasht cultivars. Spraying of gibberellic acid induced the highest chlorophyll content in the three salinity levels and all of the cultivars. The maximum amount of stomatal conductance was achieved under gibberellic acid treatment. Abscisic acid caused less chlorophyll fluorescence in comparison to gibberellic acid. About relative water content, abscisic acid was effective in high salinity levels so that it caused stomatal closure, which reduced water loss and maintained turgor in plants.

Keywords: Triticum aestivum; NaCl; gibberellic acid; abscisic acid; chlorophyll fluorescence; stomatal conductance

  • ABDEL-HALEEM, H.A. - TANIMOTO, S. 2008. ABA-induced polypeptide accumulation in drought tolerant rice. In Bulletin of Faculty ofAgriculture Saga University, vol. 93, 2008, pp. 109-115.Google Scholar

  • ADNAN SHAHID, M. - PERVEZ, M.A. - BALAL, R.M. - Azhar, N. - SHAHZAD, J. 2008. Physiological responses of pea (Pisum sativum cv. Meteor) to irrigation salinity. In Pakistan Journal of AgriculturalSciences, vol. 45, 2008, pp. 36-39.Google Scholar

  • AKBARI GHOGDI, E. - IZADI-DARBANDI, A. - BORZOUEI, A. 2012. Effects of salinity on some physiological traits in wheat (Triticum aestivum L.) cultivars. In Indian Journal of Science and Technology, vol. 5, 2012, no. 1, pp. 1901-1906.Google Scholar

  • ALDESUQUY, H.S. - GABER, A.M. 1993. Effect of growth regulators on vicia faba plants irrigated by seawater, leaf area, pigment content and photosynthetic activity. In Plant Biology, Vol. 35, 1993, pp. 519-527. DOI: 10.1007/BF02928026 CrossrefGoogle Scholar

  • ALDESUQUY, H.S. - IBRAHIM, A.H. 2001. Water relations, abscisic acid and yield of wheat plants in relation to the interactive effect of Seawater and growth bioregulators. In Journal of Agronomyand Crop Science. vol. 187, 2001, pp. 97-104. DOI: 10.1046/j.1439-037X.2001.00506.xCrossrefGoogle Scholar

  • ALLAHVERDIEV, S. R. - MAVITUNA, M. - GANIEVA, R. - NAFISI, S. 1998. Effects of salt stress and synthetic hormone polystimuline k on photosynthetic activity of Trianea bogotensis karst. In Turkish Journalof Botany, vol. 22, 1998, pp. 19-23.Google Scholar

  • ASHRAF, M.Y. - AKHTAR, K. - SARWAR, G. - ASHRAF, M. 2005. Role of rooting system in salt tolerance potential of different guar accessions. In Agronomy for Sustainable Development, vol. 25, 2005, pp. 243-249. DOI: 10.1051/agro:2005019 CrossrefGoogle Scholar

  • BELKHODJA, R. - MORALES, F. - ABADIA, A. - MEDRANO, H. - ABADIA, J. 1999. Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a tripleline- source sprinkler system in the field. In Photosynthe-tica, vol. 36, 1999, no. 3, pp. 375-387. DOI: 10.1023/A:1007019918225 CrossrefGoogle Scholar

  • BELTRANO, J. - MONTALDI, E. - BARTOLI, C. - CARBONE, A. 1997. Emission of water stress ethylene in wheat (Triticum aestivum L.) ears: Effects of rewatering. In Plant Growth Regulation, vol. 21, 1997, pp. 121-126. DOI: 10.1023/A:1005717820782 CrossrefGoogle Scholar

  • BHUTTA, W.M. 2011. Antioxidant activity of enzymatic system of two different wheat (Triticum aestivum L.) cultivars growing under salt stress. In Plant Soil Environment, vol. 57, 2011, no. 3, pp. 101-107.Google Scholar

  • CHAKRABARTI, N. - MUKHERJI, S. 2003. Alleviation of NaCl stress by pre-treatment with phytohormones in Vigna radiata. In Plant Biology, vol. 46, 2003, pp. 589-594. DOI: 10.1023/A:1024827931134 CrossrefGoogle Scholar

  • CHATRATH, A. - MANDAL, P.K. - ANURADHA, M. 2000. Effect of secondary salinization on photosynthesis in fodder oat (Avena sativa L.) genotypes. In Journal ofAgronomy and Crop Science, vol. 184, 2000, pp. 13-16. DOI: 10.1046/j.1439-037x.2000.00333.x CrossrefGoogle Scholar

  • CHAVES, M.M. - FLEXAS, J. - PINHEIRO, C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. In Annalsof Botany, vol. 103, 2009, pp. 551-560. DOI: 10.1093/aob/mcn125 Web of ScienceCrossrefGoogle Scholar

  • DeELL, J.R. - VAN COOTEN, O. - PRANGE, R.K. - MURR, D.P. 1999. Applications of chlorophyll fluorescence techniques in postharvest physiology. In Horticultural Reviews, vol. 23, 1999, pp. 69-107. DOI: 10.1002/9780470650752.ch2 CrossrefGoogle Scholar

  • EL-BASSIOUNY, H.M.S. - BEKHETA, M.A. 2004. Role of putrescine on growth, regulation of stomatal aperture, ionic contents and yield by two wheat cultivars under salinity stress. In Egyptian Journal of PhysiologyScience, vol. 26, 2004, pp. 95-114.Google Scholar

  • EL-TAYEB, M.A. 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. In Journal of Plant Growth Regulation, vol. 45, 2005, pp. 215-224. DOI: 10.1007/s10725-005-4928-1 CrossrefGoogle Scholar

  • ESFANDIARI, E. - SHEKARI, F. - SHEKARI, F. - ESFANDIARI, M. 2007. The effect of salt stress on antioxidant enzymes’ activity and lipid peroxidation on the wheat seedling. In Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 35, 2007, pp. 48-56.Google Scholar

  • GOH, C.H. - LEE, D.J. - BAE, H.J. 2009. Gibberellic acid of Arabidopsis regulates the abscisic acid-induced inhibition of stomatal opening in response to light. In Plant Science, vol. 176, 2009, no. 1, pp. 136-142. DOI: 10.1016/j.plantsci.2008.10.005 CrossrefWeb of ScienceGoogle Scholar

  • GONZÁLEZ, L. - GONZÁLEZ-VILAR, M. 2001. Determination of relative water content, In REIGOSA ROGER, M.G. (Ed.): Handbook of Plant Ecophysiology Techniques, the Netherlands : Kluwer Academic Publishers, 2001. ISBN 978-0-7923-7053-6, pp 207-212.Google Scholar

  • GUPTA, S. - CHATTOPADHYAY, P. - GHOSH, B. - SEN GUPTA, D.N. 1998. Expression of abscisic acid-responsive element-binding protein in salt-tolerant indica rice (Oryza sativa L. cv. Pokkali). In Plant MolecularBiology, vol. 37, 1998, pp. 629-637. DOI: 10.1023/ A:1005934200545 CrossrefGoogle Scholar

  • IQBAL, N. - ASHRAF, M.Y. - JAVED, F. - MARTINEZ, V. - AHMAD, K. 2006. Nitrate reduction and nutrient accumulation in wheat (Triticum aestivum L.) grown in soil salinization with four different salts. In Journalof Plant Nutrition, vol. 29, 2006, pp. 409-421. DOI: 10.1080/01904160500524852 CrossrefGoogle Scholar

  • JYOTHSNAKUMARI, G. - THIPPESWAMY, M. - VEERANAGAMALLALAH, G. - SUDHAKAR, G. 2009. Differential expression of LEA proteins in two genotypes of mulberry under salinity. In Biologia Plantarum, vol. 53, 2009, no. 1, pp. 145-150. DOI: 10.1007/ s10535-009-0022-2 CrossrefGoogle Scholar

  • KAYA, C. - TUNA, A.L. - YOKAS, I. 2009. The role of plant hormones in plants under salinity stress. In ASHRAF, M. (Ed.) OZTURK, M. ATHAR, HR. Salinityand water stress: improving crop efficiency. Tasks forvegetation sciences 34, vol. 44. Springer science, 2009. pp 45-49. DOI: 10.1007/978-1-4020-9065-3_5 CrossrefGoogle Scholar

  • KHAN, N.A. 2003. NaCl inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzymes activities in wheat. In Journalof Plant Biology, vol. 47, 2003, pp. 437-440. DOI: 10.1023/B:BIOP.0000023890.01126.43 CrossrefGoogle Scholar

  • KHANDAN BEJANDI, T. - SEDGHI, M. - SEYED SHARIFI, R. - NAMVAR, A. - MOLAEI, P. 2009. Seed priming and sulfur effects on soybean cell membrane stability and yield in saline soil. Pesquisa AgropecuáriaBrasileira, vol. 44, 2009, pp. 1114-1117. DOI: 10.1590/ S0100-204X2009000900007CrossrefGoogle Scholar

  • KRISHNARAJ, S. - MAWSON, B.T. - YEUNG, E.C. - THORPE, T.A. 1993. Utilization of induction and quenching kinetics of chlorophyll a fluorescence for invivo salinity screening studies in wheat (Triticum aestivum vars. Kharchia-65 and Fielder). In Canadian Journalof Botany, vol. 71, 1993, pp. 87-92. DOI: 10.1139/ b93-010 CrossrefGoogle Scholar

  • LEVENT TUNA, A. - KAYA, C. - DICILITAS, M. - HIGGS, D. 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. In Environmental and ExperimentalBotany, vol. 62, 2008, pp. 1-9. DOI: 10.1016/ j.envexpbot.2007.06.007 Web of ScienceCrossrefGoogle Scholar

  • LEVITT, J. 1980. Responses of Plants to EnvironmentalStresses: Water, radiation, salt, and other stresses. New York, USA : Academic Press, 1980. 607 pp. ISBN 978-0124455023.Google Scholar

  • LOBNA, Z. - GHARBI, F. - REZGUI, F. - REJEB, S. - NAHDI, H. - REJEB, M. N. 2009. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato (Solanum lycopersicum) (variety Rio Grande). In Scientia Horticulturae, vol. 120, 2009, pp. 367-372. DOI: 10.1016/j.scienta.2008.11.025 CrossrefWeb of ScienceGoogle Scholar

  • LUDEWIG, M. - DORFFLING, K. - SEIFERT, H. 1988. Abscisic acid and water transport in sunflowers. In Planta, vol. 175, 1988, pp. 325-333. DOI: 10.1007/ BF00396337 CrossrefGoogle Scholar

  • MUNNS, R. 2005. Genes and salt tolerance: bringing them together. In New Phytologist, vol. 167, 2005, pp. 645-663. DOI: 10.1111/j.1469-8137.2005.01487.x CrossrefGoogle Scholar

  • MUNNS, R. - TERMAAT, A. 1986. Whole plant responses to salinity. In Australian Journal of Plant Physiology, vol. 13, 1986, pp. 143-160. DOI: 10.1071/PP9860143 Web of ScienceCrossrefGoogle Scholar

  • NAQVI SSM. 1999. Plant hormones and stress phenomena. In PESSARAKLI, M. ed, Handbook of plant and crop stress, Marcel Dakker, New York, pp. 709-730. DOI: 10.1201/9780824746728.ch34 CrossrefGoogle Scholar

  • NELSON, D.E. - RAMMESMAYER, G. - BOHNERT, H.J. 1998. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. In The PlantCell, vol. 10, 1998, no. 5, pp. 753-764. DOI: 10.1105/ tpc.10.5.753 CrossrefGoogle Scholar

  • PRAKASH, L. - PRATHAPASENAN, G. 1990. Interactive effect of NaCl salinity and gibberellic acid on shoot growth, content of abscisic acid and gibberellinslike substances and yield of rice (Oryza sativa L. var GR-3). In Plant Science, vol. 100, 1990, pp. 173-181. DOI: 10.1007/BF03053447 CrossrefGoogle Scholar

  • RAHNAMA, H. - EBRAHIMZADEH, H. 2004. The effect of NaCl on proline accumulation in potato seedling and calli. In Physiologia Plantarum, vol. 26, 2004, no. 3, pp. 263-270. DOI: 10.1007/s11738-004-0016-9 CrossrefGoogle Scholar

  • RAHNAMA, A. - POUSTINI, K. - TAVAKKOL-AFSHARI, R. - TAVAKOLI, A. 2010. Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress. In International Journal of Biological andLife Sciences, vol. 6, 2010, pp. 4.Google Scholar

  • RODRIGUEZ, P. - DELL’AMICO, J. - MORALES, D. - SANCHEZ BLANCO, M.J. 1997. Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants. In The Journal of AgriculturalScience, vol. 128, 1997, pp. 439-444.Google Scholar

  • SAIRAM, R.K. - VEERABHADRA RAO, K. - SRIVASTAVA, G.C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. In Plant Science, vol. 163, 2002, pp. 1037-1046. DOI: 10.1016/S0168-9452(02)00278-9 CrossrefGoogle Scholar

  • SAYED, O.H. 2003. Chlorophyll fluorescence as a tool in cereal crop research. In Photosynthetica, vol. 41, 2003, pp. 321-330. DOI: 10.1023/B:PHOT.0000015454.36367. e2 CrossrefGoogle Scholar

  • SCHONFELD, M.A. - JOHNSON, R.C. - CARVER, B.F. - MORNHINWEG, D.W. 1988. Water relations in winter wheat as drought resistance indicators. In Journal of Crop Science, vol. 28, 1988, pp. 526-531. DOI: 10.2135/cropsci1988.0011183X002800030021x CrossrefGoogle Scholar

  • SHAH, S.H. 2007. Effects of salt stress on mustard as affected by gibberellic acid application. In General andApplied Plant Physiology, vol. 33, 2007, pp. 97-106.Google Scholar

  • TURAN, M.A. - ELKARIM, A.H.A. - TABAN, N. - TABAN, S. 2009. Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. In African Journal of AgriculturalResearch, vol. 4, 2009, no. 9, pp. 893-897.Google Scholar

  • UZMA, F. - ASGHARI, B. 2006. Effect of abscisic acid and chlorocholine chloride on nodulation and biochemical content of Vigna radiata (L.) under water stress. In Pakistan Journal of Botany, vol. 38, 2006, no. 5, pp. 1511-1518.Google Scholar

About the article

Published Online: 2013-04-12

Published in Print: 2013-03-01

Citation Information: Agriculture, Volume 59, Issue 1, Pages 33–41, ISSN (Online) 1338-4376, ISSN (Print) 0551-3677, DOI: https://doi.org/10.2478/agri-2013-0004.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in