Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Agriculture (Pol'nohospodárstvo)

The Journal of National Agricultural and Food Centre

4 Issues per year

CiteScore 2016: 0.59

SCImago Journal Rank (SJR) 2016: 0.196
Source Normalized Impact per Paper (SNIP) 2016: 0.360

Open Access
See all formats and pricing
More options …

Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (phaseolus vulgaris l.)

Omid Younesi
  • Corresponding author
  • Ph.D. of plant physiology, College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Professor Ali Moradi
  • Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-12 | DOI: https://doi.org/10.2478/agri-2014-0002


Plant Growth-Promoting Rhizobacterium (PGPR) represents a wide variety of soil bacteria that, when grown in association with a host plant, result in stimulation of growth of their host. The aim of this study was to investigate the influence of inoculation with a PGPR, Pseudomonas fluorescence, alone or in combination with an arbuscular mycorrhizal fungus, Glomus mosseae (Nicol. & Gerd.), on antioxidant enzyme activities (catalase (CAT) and peroxidase (POX)), phosphatase activity, solutes accumulation, growth and minerals nutrient uptake in shoots of bean (Phaseolus vulgaris L.) affected by three levels of salt stress. Salinity decreased bean growth, regardless of the biological treatment and the salt stress level. The plants inoculated with P. fluorescence had significantly greater shoot biomass than the control plants at all salinity levels, whereas the mycorrhizal inoculation treatments were only effective in increasing shoot biomass at a low salinity level. The plants inoculated with P. fluorescence presented higher concentrations of shoots’ K+ and lower concentrations of shoots’ Na+ under high salt conditions. Salt stress increased shoots’ proline concentration, particularly in plants inoculated with the PGPR. Increasing salinity stress raised significantly the antioxidant enzyme activities, including those of total POX and CAT, of bean shoots compared with their corresponding nonstressed plants. The PGPR strain induced a higher increase in these antioxidant enzymes in response to severe salinity. Inoculation with selected PGPR could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.

Keywords: arbuscular mycorrhizal fungi; bean; plant growth-pro moting rhizobacterium; salinity


  • AEBI, H. 1984. Catalase in vitro. In Methods in Enzymology, vol. 105, pp. 121-126.Google Scholar

  • ASHRAF, M. - BERGE, S.H. - MAHMOOD, O.T. 2004. Inoculating wheat seedlings with exopolysaccharide- producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. In Biology and Fertility of Soils, vol. 40, pp. 157-162. DOI 10.1007/ s00374-004-0766-y.CrossrefGoogle Scholar

  • AUGÉ, R.M. 2001. Water relations, drought and vesicular- arbuscular mycorrhizal symbiosis. In Mycorrhiza, vol. 11, no. 1, pp. 3-42.Google Scholar

  • BATES, L.S. - WALDREN, R.P. - TEARE, I.D. 1973. Rapid determination of free proline for water stress studies. In Plant and Soil, vol. 39, no. 1, pp. 205-207.CrossrefGoogle Scholar

  • BLIGH, E.G. - DYER, W.J. 1959. A rapid method of total lipid extraction and purification. In Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 91 1-917.Google Scholar

  • CARAVACA, F. - FIGUEROA, D. - BAREA, J.M. - AZCÓN-AGUILAR, C. - ROLDÁN, A. 2004. Effect of mycorrhizal inoculation on the nutrient content, gas exchange and nitrate reductase activity of Retama sphaerocarpa and Olea europaea subsp. sylvestris under drought stress. In Journal of Plant Nutrition, vol. 27, pp. 57-74. DOI:10.1081/PLN-120027547.CrossrefGoogle Scholar

  • DUFF, S.M.G. - SARATH, G. ‒ PLAXTON, W.C. - 1994. The role of acid phosphatases in plant phosphorus metabolism. In Physiology Plantarum, vol. 90, pp. 791-800. DOI: 10.1 111/j.1399-3054.1994.tb02539.x.CrossrefGoogle Scholar

  • EHSANPOUR, A.A. - AMINI, F. 2003. Effect of salt and drought stress on acid phosphatase activities in alfalfa (Medicago sativa L.) explants under in vitro culture. In African Journal of Biotechnology, vol. 2, pp. 133-135.Google Scholar

  • GIOVANNETTI, M. - MOSSE, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. In New Phytologist, vol. 84, no. 3, pp. 489-500. DOI: 10.1111/j.1469-8137.1980.tb04556.x.CrossrefGoogle Scholar

  • GIRI, B. - KAPOOR, R. - MUKERJI, K.G. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhizal, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. In Microbial Ecology, vol. 54, no. 4, pp. 753-760. DOI: 10.1007/s00248-007-9239-9.Web of ScienceCrossrefGoogle Scholar

  • GIRI, B. - MUKERJI, K.G. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. In Mycorrhiza, vol. 14, pp. 307-312.CrossrefGoogle Scholar

  • GLICK, B.R. - LIU, C. - GHOSH, S. - DUMBROF, E.B. - 1998. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. In Soil Biology and Biochemistry, vol. 29, no. 8, pp. 1233-1239.Google Scholar

  • GOICOECHEA, N. - MERINO, S. - SÁNCHEZ-DÍAZ, M. 2005. Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. In Journal of Plant Physiology, vol. 162, no. 1, pp. 27-35. DOI:10.1016/j.jplph.2004.03.01 1.CrossrefGoogle Scholar

  • HANTNGSTON, T.G. - SMITH, M.S. - THOMAS, G.W. - BLEVINS, R.L. -PEREZ, A. 1986. Responses of Phseolus vulgaris to inoculation with Rhizobium phaseoli under two tillage systems in the Dominican Republic. In Plant and Soil, vol. 95, pp. 77-85.Google Scholar

  • HERNANDEZ, J.A. - AGUILAR, A. - PORTILO, B. - LOPEZ-GOMEZ, E. - MATAIZ BENEYTO, J. - GARCIALEGAZ, MF. 2003. The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. In Functional Plant Biology, vol. 30, pp. 1 127-1137.Google Scholar

  • HOQUE, M.A. - OKUMA, E. - BANU, M.N.A. - NAKAMURA, Y. - SHIMOISHI, Y. - MURATA, Y. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. In Journal of Plant Physiology, vol. 164, no. 5, pp. 553-561. DOI:10.1016/j.jplph.2006.03.010.Web of ScienceCrossrefGoogle Scholar

  • IBRAHIM, M.A. - CAMPBELL, W.F. - RUPP, L.A. - ALLEN, E.B. 1990. Effects of mycorrhizae on sorghum growth, photosynthesis, and stomatal conductance under drought conditions. In Arid Soil Research and Rehabilitation, vol. 4, pp. 99-107.CrossrefGoogle Scholar

  • IRIGOYEN, J.J. - EMERICH, D.W. - SÁNCHEZ-DÍAZ, M. 1992.Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. In Physiologia Plantarum, vol. 84, no. 1, pp. 55‒60. DOI: 10.1111/ j.1399-3054.1992.tb08764.x.CrossrefGoogle Scholar

  • JEFFRIES, P. - GIANINAZZI, S. - PEROTTO, S. - TURNAU, K. - BAREA, J.M. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. In Biology and Fertility of Soils, vol. 37, no. 1, pp. 1-16. DOI: 10.1007/s00374-002-0546-5.CrossrefGoogle Scholar

  • KIM, S.Y. - LIM, J.H. - PARK, M.R. - KIM, Y.J. - PARK, T.I.I. - SEO, Y.W. - CHOI, K.G. - YUN, S.J. 2005. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under salt stress. In Journal of Biochemistry and Molekular Biology, vol. 38, pp. 218-224.Google Scholar

  • KOHLER, J. - CARAVACA, F. - CARRASCO, L. - ROLDÁN, A. 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilisation and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions. In Soil Use Management, vol. 22, no. 3, pp. 298-304. DOI: 10.1111/j.1475-2743.2006.00041.x.CrossrefGoogle Scholar

  • LAX, A. - DÍAZ, E. - CASTILLO, V. - ALBALADEJO, J. 1994. Reclamation of physical and chemical properties of a salinized soil by organic amendment. In Arid Soil Research and Rehabilitation, vol. 8, pp. 9-17.Google Scholar

  • LEE, G. - CARROW, R.N. - DUNCAN, R.R. - EITEMAN, M.A. - RIEGER, M.W. 2008. Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. In Environmental and Experimental Botany, vol. 63, no. 1-3, pp. 19-27. DOI:10.1016/j.envexpbot.2007.10.009.Web of ScienceCrossrefGoogle Scholar

  • MÄKELÄ, P. - KÄRKKÄINEN, J. - SOMERSALO, S. 2000. Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. In Biologia Plantarum, vol. 43, no. 3, pp. 471-475. MAYAK, S. - TIROSH, T. - GLICK, B.R. - 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. In Plant Physiology and Biochemistry, vol. 42, no. 6, pp. 565-572. DOI:10.1016/j. plaphy.2004.05.009.CrossrefGoogle Scholar

  • MIKE, F. - QUARTACCI, M.G. - NAVARI-IZZO, F. 1992.Water stress and free radical mediated changes in sunflower seedlings. In Journal of Plant Physiology, vol. 139, no. 5, pp. 621-626.Google Scholar

  • MURPHY, J. - RILEY, J.P. - 1962. A modified single solution method for determination of phosphate in natural waters. In Analytica Chimica Acta, vol. 27, pp. 31-36.CrossrefGoogle Scholar

  • OLMOS, E. - HELLIN, E. 1997. Cytochemical localization of ATPase plasma membrane and acid phosphatase by cerium based in a salt-adapted cell line of Pisum sativum. In Journal of Experimental Botany, vol. 48, pp. 1529-1535.CrossrefGoogle Scholar

  • PARIDA, A.K. - DAS, A.B. 2005. Salt tolerance and salinity effects on plants: a review. In Ecotoxicology and Environmental Safety, vol. 60, pp. 324-349. DOI:10.1016/j.ecoenv.2004.06.010.CrossrefGoogle Scholar

  • PHILLIPS, J.M. - HAYMAN, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscularmycorrhizal fungi for rapid assessment of infection. In Transaction of the British Mycological Society, vol. 55, no. 1, pp. 158-161.Google Scholar

  • QUEREJETA, J.I. - BAREA, J.M. - ALLEN, M.F. - CARAVACA, F. - ROIDAN, A. 2003. Differential response of δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. In Oecologia, vol. 135, pp. 510-515. DOI: 10.1007/s00442-003-1209-4.CrossrefGoogle Scholar

  • QUIROGA, M. - GUERRERO, C. - BOTELLA, M.A. - BARCELÓ, A.R. - MEDINA, M.I. - ALONSO, F.J. 2000.A tomato peroxidase involved in the synthesis of lignin and suberin. In Plant Physiology, vol. 122, pp. 1 119-1127.Google Scholar

  • ROS-BARCELÓ, A. - GÓMEZ-ROS, L.V. - FERRER, M.A. - HERNÁNDEZ, J.A. 2006. The apoplastic antioxidant enzymatic systeminthewood-forming tissues of trees. In Trees-Structure and Function, vol. 20, no. 2, pp. 145-156. DOI 10.1007/s00468-005-0020-8.CrossrefGoogle Scholar

  • ROS-BARCELÓ, A. 1998. The generation of H2O2 in the xylemof Zinnia elegans ismediated by an NADPH-oxidase-like enzyme. In Planta, vol. 207, pp. 207-216.Google Scholar

  • RUIZ-LOZANO, J.M. - AZCÓN, R. 1996. Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. In Agriculture Ecosystem & Environment, vol. 60, no. 2-3, pp. 175-181.Google Scholar

  • RUIZ-LOZANO, J.M. - AZCÓN, R. 2000. Symbiotic effi- ciency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. In Mycorrhiza, vol. 10, pp. 137-143.CrossrefGoogle Scholar

  • SARAVANAKUMAR, D. - SAMIYAPPAN, R. 2007. ACC deaminase from Pseudomonas fluorescensmediated saline resistance in groundnut (Arachis hypogea) plants. In Journal of Applied Microbiology, vol. 102, pp. 1283-1292.CrossrefGoogle Scholar

  • SCANDALIOS, J.G. - GUAN, L. - POLIDORDS, A.N. 1997. Catalases in plants: gene structure, proprieties, and expression. In SCANDALIOS, J.G. (Ed.) Oxidative stress and the Molecular Biology of Antioxidant Defences. Cold Spring Harbor : New York, pp. 343-406.Google Scholar

  • SCHELLENBAUM, L. - MÜLLER, J. - BOLLER, T. - WIENKEN, A. - SCHÜEPP, H. 1998. Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalose, and in the pools of amino acids and imino acids. In New Phytologist, vol. 138, no. 1, pp. 59-66.DOI: 10.1046/j.1469-8137.1998.00892.x.CrossrefGoogle Scholar

  • SHARIFI, M. - GHORBANLI, M. - EBRAHIMZADEH, H. 2007. Improved growth of salinity- stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. In Journal of Plant Physiology, vol. 164, no. 9, pp. 1 144-1151. DOI:10.1016/j.jplph.2006.06.016.Web of ScienceCrossrefGoogle Scholar

  • SHARMA, K.D. - DATTA, K.S. - VERMA, S.K. 1990. Effect of chloride and sulphate type of salinity on some metabolic drifts in chickpea (Cicer arietinum L.). In Indian Journal of Experimental Biology, vol. 28, pp. 890-892.Google Scholar

  • SIEVERDING, E. 1991. Vesicular-arbuscular Mycorrhiza Management in Tropical Agrosystems. Eschborn, Germany : GTZ, pp. 371.Google Scholar

  • SIVRITEPE, N. - SIVRITEPE, H.O. - ERIS, A. 2003. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. In Scientia Horticulturae, vol. 97, pp. 229-237.CrossrefGoogle Scholar

  • TABATABAI, M.A. - BREMNER, J.M. 1969. Use of p-nitrophenol phosphate in assay of soil phosphatase activity. In Soil Biology and Biochemistry, vol. 1, no. 4, pp. 301-307.Google Scholar

  • TANK, N.D. - SARAF, M.S . 2010. Salinity resistant PGPR ameliorates NaCl stress on tomato plants. In Journal of Plant Interaction, vol. 5, pp. 51-58. DOI:10.1080/17429140903125848.CrossrefGoogle Scholar

  • YAZICI, I. - TÜRKAN, I. - SEKMEN, A.H. - DEMIRAL, T. 2007. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. In Environmental and Experimental Botany, vol. 61, pp. 49-57. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-04-12

Published in Print: 2014-03-01

Citation Information: Agriculture, Volume 60, Issue 1, Pages 10–21, ISSN (Online) 1338-4376, ISSN (Print) 0551-3677, DOI: https://doi.org/10.2478/agri-2014-0002.

Export Citation

© by Omid Younesi . This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in