Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Agriculture (Pol'nohospodárstvo)

The Journal of National Agricultural and Food Centre

4 Issues per year

CiteScore 2016: 0.59

SCImago Journal Rank (SJR) 2016: 0.196
Source Normalized Impact per Paper (SNIP) 2016: 0.360

Open Access
See all formats and pricing
More options …

Current State and Development of Land Degradation Processes Based on Soil Monitoring in Slovakia

Jozef Kobza
  • Corresponding author
  • National Agricultural and Food Centre – Soil Science and Conservation Research Institute, Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriela Barančíková
  • National Agricultural and Food Centre – Soil Science and Conservation Research Institute, Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jarmila Makovníková
  • National Agricultural and Food Centre – Soil Science and Conservation Research Institute, Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Boris Pálka
  • National Agricultural and Food Centre – Soil Science and Conservation Research Institute, Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ján Styk
  • National Agricultural and Food Centre – Soil Science and Conservation Research Institute, Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miloš Širáň
  • National Agricultural and Food Centre – Soil Science and Conservation Research Institute, Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-09 | DOI: https://doi.org/10.1515/agri-2017-0007


Current state and development of land degradation processes based on soil monitoring system in Slovakia is evaluated in this contribution. Soil monitoring system in Slovakia is consistently running since 1993 year in 5-years repetitions. Soil monitoring network in Slovakia is constructed using ecological principle, taking into account all main soil types and subtypes, soil organic matter, climatic regions, emission regions, polluted and non-polluted regions as well as various land use. The result of soil monitoring network is 318 sites on agricultural land in Slovakia. Soil properties are evaluated according to the main threats to soil relating to European Commission recommendation for European soil monitoring performance as follows: soil erosion and compaction, soil acidification, decline in soil organic matter and soil contamination. The most significant change has been determined in physical degradation of soils. The physical degradation was especially manifested in compacted and the eroded soils. It was determined that about 39% of agricultural land is potentially affected by soil erosion in Slovakia. In addition, slight decline in soil organic matter indicates the serious facts on evaluation and extension of soil degradation processes during the last period in Slovakia. Soil contamination is without significant change for the time being. It means the soils contaminated before soil monitoring process this unfavourable state lasts also at present.

Keywords: soil monitoring; threats to soil; soil degradation processes; soils in Slovakia


  • ABDALLA, M. ‒ OSBORNE, B. ‒ LANIGAN, G. ‒ FORRISTAL, D. ‒ WILLIAMS, M. ‒ SMITH, P. ‒ JONES, M.B. 2013. Conservation tillage systems: a review of its consequences for gas emissions. In Soil Use and Management, vol. 29, pp. 199‒209.Google Scholar

  • ARANDA, V. ‒ AYORA-CANADA, M.J. ‒ DOMINGUEZ-VIDAL, A. ‒ MARTÍN-GARCÍA, J.M. ‒ CALERO, J. ‒ DELGADO, R. ‒ VERDEJO, T. ‒ GONZÁLES-VILA, F.J. 2011. Effect of soil type and management (organic vs. conventional) on soil organic mater quality in olive groves in a semi-arid environment in Sierra Mágina Natural Park (Spain). In Geoderma, vol. 164, pp. 54‒63.Google Scholar

  • BENITES, V.M. – MACHADO, P.L.O.A. – FIDALGO, E.C.C. – COELHO, M.R. – MADARI, B.E. 2017. Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. In Geoderma, vol. 139, pp. 90–97.Google Scholar

  • BIELEK, P. 2014. Kompendium praktického pôdoznalectva [Compendium to practically oriented soil science]. Nitra : SPU Nitra, 244 p. ISBN 978-80-552-1155-8Google Scholar

  • BORŮVKA, L. ‒ DRÁBEK, O. 2004. Heavy metals distribution between fractions of humic substances in heavily polluted soils. In Plant, Soil and Environment, vol. 5, pp. 339‒345.Google Scholar

  • CAUSARANO, H.J. ‒ FRANZLUEBBERS, A.J. ‒ REEVES, D.W. ‒ SHAW, J.N. 2006. Soil organic carbon sequestration in cotton production systems of the southeastern united states. In Journal of Environment Quality, vol. 35, pp. 1374‒1383.Google Scholar

  • CHLOPECKA, A. – BACON, J.R. – WILSON, M.J. – KAY, J. 1996. Forms of cadmium, lead, and zinc in contaminated soils from southwest Poland. In Journal of Environment Quality, vol. 25, pp. 69‒79.Google Scholar

  • ČURLÍK, J. – ŠEFČÍK, P. 1999. Geochemický atlas Slovenskej republiky, časť V. Pôdy [Geochemical Atlas of the Slovak Republic. Part V. Soils ]. Bratislava : MŽP SR, 99 p.Google Scholar

  • DAM, R.F. – MEHDI, B.B. ‒ BURGESS, M.S.E. – MADRAMOOTOO, C.A. – MEHUYS, G.R. – CALLUM, I.R. 2005. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. In Soil & Tillage Research, vol. 84, pp. 41–53.Google Scholar

  • De KIMPE, C.R. – WARKENTIN, B.P. 1998. Soil functions and the future of natural resources. In BLUME, H.P. – EGER, H. – FLEISCHHAUER, E. – HEBEL, A. – REIJ, C. – STEINER, K.G. Towards Sustainable Land Use. Advances in GeoEcology 31, vol. I., Reiskirchen, Germany : Catena Verlag GMBH, pp. 3–10.Google Scholar

  • DUDKA, S. – ADRIANO, D.C. 1997. Environmental impacts of metal ore mining and processing: a review. In Journal of Environmental Quality, vol. 26, pp. 590–602.Google Scholar

  • FAO, 2015. World reference base (WRB) for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. Rome, Italy. ISBN 978-92-5-108369-7; ISSN 0532-0488Google Scholar

  • FAZEKAŠOVÁ, D. – BOGUSKÁ, Z. – FAZEKAŠ, J. – ŠKVARENINOVÁ, J. – CHOVANCOVÁ, J. 2016. Contamination of vegetation growing on soils and substrates in the unhygienic region of Central Spiš (Slovakia) polluted by heavy metals. In Journal of Environmental Biology, vol. 37, pp. 1335–1340.Google Scholar

  • FULAJTÁR, E. ‒ JANSKÝ, L. 2001. Vodná erózia pôdy a protierózna ochrana [Water erosion of soil and protection again erosion]. Bratislava : VÚPOP, 136 p. ISBN 80-85361-85-XGoogle Scholar

  • GODFRAY, H. C.J. – BEDDINGTON, J.R. – CRUTE. I.R. – HADDAD, L. – LAWRENCE, D. – MUIR, J.F. – PRETTY, J. – ROBINSON, S. – THOMAS, S.M. – TOULMIN, C. 2010. The challenge of feeding 9 billion people. In Science, vol. 327, pp. 812–818.Google Scholar

  • HANES, J. – CHLPÍK, J. – MUCHA, V. – SISÁK, P. – ZAUJEC, A. 1995. Pedológia (Praktikum) [Soil Science – excercise book]. Nitra : VŠP, 153 p. ISBN 80-7137-195-5Google Scholar

  • HEUSCHER, S.A. ‒ BRANDT, C.C. ‒ JARDINE, P.M. 2005. Using soil physical and chemical properties to estimate bulk density. In Soil Science Society of America Journal, vol. 69, no. 1, pp. 51–56.Google Scholar

  • HIRADATE, S. 2004. Speciation of Aluminium in Soil Environments. In Soil Science and Plant Nutrition, vol. 50, no. 3, pp. 303‒314.Google Scholar

  • JANZEN, H.H. 2006. The soil carbon dilemma: shall we hoard it or use it. In Soil Biology and Biochemistry, vol. 38, pp. 419–424.Google Scholar

  • JONES, A. – PANAGOS, P. – BARCELO, S. – BOURAOUI, F. – BOSCO, C. – DEWITTE, O. – GARDI, C. – HERVÁS, J. – HIEDERER, R. – JEFFERY, S. – MONTANARELLA, L. – PENÍZEK, V. – TÓTH, G. – EECKHAUT, M.V.D. – LIEDEKERKE, M.V. – VERHEIJEN, F. – YIGINI, Y. 2012. The state of soil in Europe. A contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report – SOER 2010. JRC 2012. ISBN 978-92-79-22806-3Google Scholar

  • KOBZA, J. – BARANČÍKOVÁ, G. – BEZÁK, P. – DODOK, R. – GREČO, V. – HRIVŇÁKOVÁ, K. – CHLPÍK, J. – LIŠTJAK, M. – MAKOVNÍKOVÁ, J. – MALIŠ, J. – PÍŠ, V. – SCHLOSSEROVÁ, J. – SLÁVIK, O. – STYK, J. – ŠIRÁŇ, M. 2011. Jednotné pracovné postupy rozborov pôd. SR [Uniform analytical procedures for soil]. Bratislava : SSCRI Publishing, 136 p. ISBN 978-80-89128-89-1Google Scholar

  • KOBZA, J. – BARANČÍKOVÁ, G. – DODOK, R. – HRIVŇÁKOVÁ, K. – MAKOVNÍKOVÁ, J. – PÁLKA, B. – PAVLENDA, P. – SCHLOSSEROVÁ, J. – STYK, J. – ŠIRÁŇ, M. 2014. Monitoring pôd SR [Soil monitoring of the Slovak Republic]. NPPC – VUPOP Bratislava, 252 p. ISBN 978-80-8163-004-0Google Scholar

  • KOBZA, J. ‒ GAŠOVÁ, K. 2014. Soil monitoring system as a basic tool for protection of soils and sustainable land use in Slovakia. In Journal of Agricultural Science and Technology A 4 (2014), USA, pp. 504–513. ISSN 1939-1250Google Scholar

  • KUMAR, S. – KADONO, A. – LAL, R. – DICK, W. 2012. Long-term No-till impacts on organic carbon and properties of two contrasting soils and corn yields in Ohio. In Soil Science Society of America Journal, vol. 76, pp. 1798–1809.Google Scholar

  • LEPP, N.W.J. – HARTLEY, M. – TOTI, M. – DICKINSON, N.M. 1996. Patterns of soil copper contamination and temporal changes in vegetation in the vicinity of a copper rod rolling factory. In Environmental Pollution, vol. 95, pp. 363–369.Google Scholar

  • LINKEŠ, V. – LEHOTSKÝ, M. – STANKOVIANSKY, M. 1992. Príspevok k poznaniu vývoja vodnej erózie pôd na pahorkatinách Podunajskej nížiny s využitím 137Cs [Contribution to development of water erosion on soils of Danube lowland with using 137Cs radioactive isotope]. In Vedecké práce VUPU Bratislava, no. 17, pp. 111–120. ISBN 80-85361-04-3Google Scholar

  • LINKEŠ, V. – KOBZA, J. – ŠVEC, M. – ILKA, P. – PAVLENDA, P. – BARANČÍKOVÁ, G. – MATÚŠKOVÁ, L. – BREČKOVÁ, V. – BÚLIK, D. – ČEPKOVÁ, V. – DLAPA, P. – DOŠEKOVÁ, A. – HOUŠKOVÁ, B. – CHOMANIČOVÁ, A. – KANIANSKA, R. – MAKOVNÍKOVÁ, J. – STYK, J. 1997. Monitoring pôd Slovenskej republiky [Soil monitoring of the Slovak Republic]. SFRI Bratislava, 128 p.Google Scholar

  • LOGSDON, S.D. 2012. Temporal Variability of Bulk Density and Soil Water at Selected Field Sites. In Soil Science, vol. 177, no. 5, pp. 327–331.Google Scholar

  • MAČUHA, P. 1999. Reakcia domácich odrôd pšenice ozimnej na toxické pôsobenie Al3+ katiónov pri nízkom pH [Reaction of domestic varieties of winter wheat on toxic activity of Al3+ cations at low pH]. In Poľnohospodárska výroba a skúšobníctvo, vol. 7, no. 3–4, pp. 25–27.Google Scholar

  • MACHADO, S. – RHINHART, K. – PETRIE, S. 2006. Long-term system effects on carbon sequestration in Eastern Oregon. In Journal of Environment Quality, vol. 35, pp. 1548–1553.Google Scholar

  • MAKOVNÍKOVÁ, J. – KANIANSKA, R. 1996. Aktívny hliník a jeho súčasný stav v pôdach SR [Active aluminium and its current state in soils of the Slovak Republic]. In Rostlinná výroba, vol. 42/7, pp. 289–292.Google Scholar

  • MAKOVNÍKOVÁ, J. – BARANČÍKOVÁ, G. – PÁLKA, B. 2007. Approach to the assessment of transport risk of inorganic pollutants based on the immobilisation capability of soil. In Plant, Soil and Environment, vol. 53, no. 8, pp. 365–373.Google Scholar

  • MAXWELL, C.D. 1991. Floristic changes in soil algae and cyanobacteria in reclaimed metal-contaminated land at Sudbury, Canada. In Water Air and Soil Pollution, vol. 60, pp. 381–393.Google Scholar

  • MERIÑO-GERGICHEVICH, J. 2010. Al3+ – Ca2+ interaction in plants growing in acid soils: Al-phytotoxicity response to calcareous amendment. In Soil Science and Plant Nutrition, vol. 10, no. 3, pp. 217–243.Google Scholar

  • MPSR 2004. Zákon č. 220/2004 Z.z. o ochrane a využívaní poľnohospodárskej pôdy. Príloha 2 pod čiastkou 96 zo dňa 28.4.2004 [Act no. 220/2004 on protection and agricultural land use. Annex 2 under part 96 from 28.4.2004].Google Scholar

  • MPRV SR. 2013. Vyhláška č. 59/2013 z 11. marca 2013, ktorou sa vykonáva § 27 zákona č. 220/2004 Z.z. o ochrane a využívaní poľnohospodárskej pôdy [Decree no. 59/2013 from 11.3.2013 for realization of § 27 of Act No 220/2004 on protection and agricultural land use].Google Scholar

  • SHIRI, J. – KESHAVARZI, A. – KISI, O. – KARIMI, S. – ITURRARAN-VIVEROS, U. 2017. Modelling soil bulk density through a complete data scanning procedure: Heuristic alternatives. In Journal of Hydrology, vol. 549, pp. 592–602.Google Scholar

  • SOANE, B.D. 1990. The role of organic matter in soil compactibility: A review of some practical aspects. In Soil and Tillage Research, vol. 16, no. 1–2, pp. 179–201.Google Scholar

  • STANKOVIANSKY, M. 2003. Historical evoluation of permanent gullies in Myjava hill land, Slovakia. In Catena, vol. 51, pp. 223–239.Google Scholar

  • STETSON, S.J. – OSBORNE, S. – SCHUMAUCHER, T.E. – EYNARD, A. – CHILOM, G. – RICE, J. – NICHOLS, A.K. – PIKUL, J.L. 2012. Corn residue removal impact on topsoil organic carbon in a corn-soybean rotation. In Soil Science Society of America Journal, vol. 76, pp. 1399–1406.Google Scholar

  • STOCKMANN, U. – ADAMS, M.A. – CRAWFORD, J.W. 2013. The knows, know unknows and unknowns of sequestration of soil organic carbon. In Agricultural and Ecosystem Environment, vol. 164, pp. 80–99.Google Scholar

  • STOLBOVOY, V. – MONTANARELLA, L. 2008. Application of soil organic carbon state indicators for policy-decision making in the EU. In TOTH, G. – MONTANARELLA, L. – RUSCO, E. (Eds.) Threats to soil quality in Europe. JRC Scientific and Technical Reports, pp. 87–99. ISBN 978-92-79-09529-0Google Scholar

  • STYK, J. 2005. Recent soil erosion estimation using 137Cs technique. In Vedecké práce VÚPOP Bratislava, no. 27, pp. 119–125. ISBN 80-89128-17-3Google Scholar

  • STYK, J. 2007. Intensity erosive-accumulative processes indication using 137Cs profile distribution in monitored locality soils. In Agriculture (Poľnohospodárstvo), vol. 53, no. 1, pp. 23–30.Google Scholar

  • STYK, J. – PÁLKA, B. – GRANEC, M. 2009. Využitie on-line aplikácie pri predikcii pôdnej erózie spôsobenej vodou [Utilization of on-line application for the prediction of soil erosion caused by water]. In Proceedings of Soil Science and Conservation Research Institute, vol. 31, Bratislava : VÚPOP, pp. 176–186. ISBN 978-80-89128-59-4Google Scholar

  • SUUSTER, E. – RITZ, CH. – ROOSTALU, H. – REINTAM, E. – KÕLLI, R. – ASTOVER, A. 2011. Soil bulk density pedotransfer functions of the humus horizon in arable soils. In Geoderma, vol. 163, pp. 74–82.Google Scholar

  • TIMM, L.C. – PIRES, L.F. – ROVERATTI, R. – ARTHUR, R.C.J. – REICHARDT, K. – OLIVEIRA, J.C.M. – BACCHI, O.O.S. 2006. Field spatial and temporal patterns of soil water content and bulk density changes. In Scientia Agricola (Piracicaba, Brazil), vol. 63, no. 1, pp. 55–64.Google Scholar

  • VAN–CAMP, B. – BUJARRABAL, A.R. – GENTILE, R.J.A. – JONES, L. – MONTANARELLA, L. – OLAZABAL, O. – SELVARADJOU, S.K. 2004. Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. EUR 21319 EN/5 (2004), Office for Official Publications of the European Communities, Luxembourg, 872 p.Google Scholar

  • VEIGA, M. – REINERT, D.J. – REICHERT, J.M. – KAISER, K.R. 2008. Short and long-term effects of tillage systems and nutrient sources on soil physical properties of a southern brazilian Hapludox. In Revista Brasileira de Ciencia do Solo [Brazilian Journal of Soil Science], vol. 32, pp.1437–1446.Google Scholar

  • WILCKE, W. – KAUPENJOHANN, 1997. Differences in concentrations and fractions of aluminium and heavy metals between aggregate interior and exterior. In Soil Science, vol. 162, pp. 323–332.Google Scholar

  • WILCKE, W. – KRAUSS, M. – KOBZA, J. 2005. Concentrations and forms of heavy metals in Slovak soils. In Journal of Plant Nutrition and Soil Science, vol. 168, pp. 676–686. DOI: 10.1002/jpln.200521811CrossrefGoogle Scholar

  • WISCHMEIER, W.H. – SMITH, D.D. 1978. Predicting rainfall erosion losses – Guide to conservation planning. Agricultural Handbook, 537, Washington, USA : USDA Publishing, 58 p.Google Scholar

About the article

Received: 2017-04-04

Published Online: 2017-09-09

Published in Print: 2017-08-01

Citation Information: Agriculture (Pol'nohospodárstvo), Volume 63, Issue 2, Pages 74–85, ISSN (Online) 1338-4376, DOI: https://doi.org/10.1515/agri-2017-0007.

Export Citation

© 2017 Jozef Kobza et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in