Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Horti Botanici Bucurestiensis

The Journal of University of Bucharest

1 Issue per year

Open Access
See all formats and pricing
More options …

Analysis of the Saxicolous Lichen Communities in Măcin Mountains National Park

Ecaterina Fodor
  • University of Oradea, Faculty of Environmental Protection, Department of Forestry and Forest Engineering, 26 Gen. Magheru Street, Oradea, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-02 | DOI: https://doi.org/10.1515/ahbb-2015-0001


The assemblage of saxicolous lichenized fungal communities in Măcin Mountains National Park was assessed during a biodiversity study developed between 2006 and 2008. Fifty three species of saxicolous lichenized fungi were identified on Hercynic granites and granitoid outcrops characterized by intense weathering process. Apparently, competition was not the main mechanism in community assemblage as calculated C score showed (non-significant difference between mean calculated and simulated score). Niche overlap assessment showed that lichens avoided competition by spatial niche partition (mean Pianka index of 0.07 for sampling quadrats and 0.20 for locations). The estimation of nestedness index (N=0.63 at local scale and N=0.88 at sampling quadrat scale) indicated that local communities were subsets of a larger, regional scale metacommunity. Similarities in community composition across locations were assessed by means of Ward algorithm, results indicating that the most dissimilar communities were encountered at Pietrele Mariei, a residual inselberg and Suluc foothill. Conservation of saxicolous communities containing endangered species such as Umbilicaria grisea, critically endangered Ramalina obtusata and vulnerable Acrocordia gemmata, Pertusaria hemisphaerica, Pertusaria pertusa will be challenged in the future by anthropogenic impact coming from agriculture, sheep grazing and quarries operating in the proximity of the reserve area.

Keywords: community assemblage; saxicolous lichenized fungal community; Hercynic granites; C-score; niche overlap; nestedness; conservation of endangered species


  • Armstrong, R.A. & Welch, A.R. (2007). Competition in lichen communities. Symbiosis, 43, 1-12.Google Scholar

  • Badiu, D., Iojă, C. & Pătroescu M. (2014). The environmental impact of arable land in a protected area of community interest. Case study: ROSCI0123 Măcin Mountains, Romania. Forum geografic, 13(1), 59-65.Google Scholar

  • Bascompte, J., Jordano, P., Melian, C.J. & Olesen, J.M. (2003). The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. USA, 100, 9383-9387.CrossrefGoogle Scholar

  • Beaudrot, L.H. & Marshall, A.J. (2011). Primate communities are structured more by dispersal limitation than by niches. Journal of Animal Ecology, 80(2), 332-341.CrossrefGoogle Scholar

  • Ciurchea, M. (1998). Lichenii din România. Vol. I. Cluj-Napoca: Presa Universitară Clujeană.Google Scholar

  • Cobanoğlu, G., Yavuz, M., Costache, I. & Radu I. (2011). Additional and new lichen records from Cozia National Park, Romania. Mycotaxon, 114, 193-196.Google Scholar

  • Colwell, R.K., Mao, C.X. & Chang, J. (2004). Interpolating, extrapolating and comparing incidence-based species accumulation curves. Ecology, 85, 2717-2727.Google Scholar

  • Connor, E.F. & Simberloff, D. (1979). The assembly of species communities: chance or competition? Ecology, 60, 1132-1140.CrossrefGoogle Scholar

  • Diamond, J.M. (1975). Assembly of species communities. In M.L. Cody & J.M. Diamond (eds.). Ecology and Evolution of Communities (pp. 342-444). Cambridge: Belknap Press.Google Scholar

  • Feeley, K. (2003). Analysis of avian communities in Lake Guri, Venezuela, using multiple assembly rule models. Oecologia, 137, 104-113.Google Scholar

  • Gavrilă, I.G. (2012). The importance of morphometric analyses in highlighting the touristic attractiveness of North-West Dobrogea landscape. Geojournal of Tourism and Geosites, 1(9), 107-108.Google Scholar

  • Gavrilă, I.G. & Anghel, T. (2013). Geomorphosites inventory in the Măcin Mountains (South-Eastern Romania). Geojournal of Tourism and Geosites, 1(11), 42-53.Google Scholar

  • Gotelli, N.J. (2001). Research frontiers in null model analysis. Global Ecology and Biogeography, 10(4), 337-343.CrossrefGoogle Scholar

  • Gotelli, N.J. & Graves, G.R. (1996). Null models in ecology. Washington D.C.: Smithsonian Institution.Google Scholar

  • Gotelli, N.J. & Entsminger, G.L. (2001a). Swap and fill algorithms in null model analysis: rethinking the knight’s tour. Oecologia, 129, 281-291.Google Scholar

  • Gotelli, N.J. & Entsminger, G.L. (2001b). EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465. Retrieved October 08, 2013 from: http://garyentsminger.com/ecosim.htm.Google Scholar

  • Gotelli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379-391.CrossrefGoogle Scholar

  • Götzenberger, L., De Bello, F., Bråthen, K.A., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K. & Zobel, M. (2012). Ecological assembly rules in plant communities - approaches, patterns and prospects. Biological Reviews, 87, 111-127.Google Scholar

  • Grime, J.P. 1979. Plant Strategies and Vegetation Processes. London: John Wiley & Sons.Google Scholar

  • Hale, M.E. Jr. (1982). Lichens as bioindicators and monitors of air pollution in the Flat Tops Wilderness Area, Colorado. Final Report, U.S.Department of Agriculture, Forest Service Contract No. OM RFPR2-81-SP35. Washington D.C.: Smithsonian Institution.Google Scholar

  • Halici, G.M. & Aksoy, A. (2006). Saxicolous and Terricolous lichens of Şirvan Mountain (Pinarbaşi, Kazseri). Turk. J. Bot., 30, 477-481.Google Scholar

  • Hammer, Ø., Harper, D.T. & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronica: Retrieved July 31, 2013 from http://palaeo-electronica.org.Google Scholar

  • Hansson, L. & Angelstam P. (1991). Landscape ecology as theoretical basis for nature conservation. Landscape Ecology, 5(4), 191-201.CrossrefGoogle Scholar

  • Hestmark, G., Skogesal, O. & Skullerud, Ø. (2007). Early recruitment equals long-term abundance in an alpine saxicolous guild. Mycologia, 99(2), 207-214.CrossrefGoogle Scholar

  • Horner-Devine, M.C., Silver, J.M., Leibold, M.A. Bohannan, B.J.M., Colwell, R.K., Fuhrman, J.A., Green, J.L., Kuske, C.R., Martiny, J.B.H., Muyzer, G., Øvreas, L., Reysenbach, A.L. & Smith, V.H. (2007). A comparison of taxon cooccurrence patterns for macro- and microorganisms. Ecology, 88, 1345-1353.CrossrefGoogle Scholar

  • Jonsson, B.G. (2001). A null model for randomization tests of nestedness in species assemblages. Oecologia, 127, 309-313.Google Scholar

  • Knudsen, K. & Magney, D. (2006). Rare Lichen Habitats and Rare Lichen Species of Ventura County, California. Opuscula Philolichenum, 3, 49-52.Google Scholar

  • Leibold, L.H., Holyoak, M., Mouquet, N., Amaresekare, P., Chase, J.M., Hoopes, M., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M. & Gonzales, A. (2004). The metacommunity concept: a framework for multiscale community ecology. Ecology Letters, 7, 601-613.CrossrefGoogle Scholar

  • Leibold, M.A. & Norberg, J. (2004). Biodiversity in metacommunities. Plankton as complex adaptive systems? Limnol. Oceanog., 49(4, part2), 1278-1289.Google Scholar

  • Lindo, Z., Winchester, N.N. & Didham, R.K. (2008). Nested patterns of community assembly in the colonization of artificial canopy habitats by oribatid mites. Oikos, 117, 1856-1864.CrossrefGoogle Scholar

  • McArthur, R. & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385.CrossrefGoogle Scholar

  • Maestre, F.T., Escolar, C., Martinez, I. & Escudero, A. (2008). Are soil lichen communities structured by biotic interactions? Journal of Vegetation Science, 19, 261-266.CrossrefGoogle Scholar

  • Magurran, A.E. (1988). Ecological Diversity and its measurement. Princeton: Princeton University Press.Google Scholar

  • Matthes, U., Ryan, B.D. & Larson, W. (2004). Community structure of epilithic lichen son cliffs of the Niagara escarpment, Ontario, Canada. Plant Ecology, 148(2), 233-244.CrossrefGoogle Scholar

  • McCoy, E.D. & Heck, K.L. Jr. (1987). Some observations on the use of taxonomic similarity in large-scale biogeography. Journal of Biogeography, 14, 79-87.CrossrefGoogle Scholar

  • Moore, J.E. & Swihart, R.K. (2007). Toward ecologically explicit null models of nestedness. Oecologia, 153, 763-777.Google Scholar

  • Motiejûnaitë, J. & Faútynowicz, W. (2005). Effect of land-use on lichen diversity in the transboundary region of Lithuania and northern Poland. Ekologija, 3, 34-43.Google Scholar

  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Peter, R., Minchin, R., O'Hara, B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H. & Wagner, H. (2013). Vegan: Community Ecology Package. R package version 2.0-10. Retrieved September 12, 2014 from: http://CRAN.R-project.org/package=vegan.Google Scholar

  • Patterson, B.D. & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipelagos. In L.R. Heaney & B.D. Patterson (eds.). Island biogeography of mammals (pp. 65-82). London: Academic Press.Google Scholar

  • Paukov, A.G. & Trapeznikova, S.N. (2004). Lithophilous lichens in Middle Ural. The 5th symposium Lichens in Focus, 16-21 August 2004, Tartu, Estonia.Google Scholar

  • Perez, P.R.E., Herrera-Campos, M.A., Castelan, Q.H. & Barrios, G.R. (2004). Corticolous lichen flora on Pinus patula from the Pinus-oak forests in Sierra de Juarez, Oaxaca. The 5th Symposium Lichens in Focus, 16-21 August 2004, Tartu, Estonia.Google Scholar

  • Pianka, E.R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53-74.CrossrefGoogle Scholar

  • Podani, J. (2000). Introduction to the exploration of multivariate biological data. Leiden: Backhuys Publishers.Google Scholar

  • Popescu, A. & Doniță, N. (2010). New phytocoenoses reported in Măcin Mountains National Park. Anniversary Conference of the Institute of Biology - 50 years of Academic research and Biology. Book of Abstracts (p. 106). Bucureşti: Ars Docendi.Google Scholar

  • Purvis, O.W. & Halls, C. (1996). A review of lichens in metal-enriched environments. The Lichenologist, 28(6), 571-601.CrossrefGoogle Scholar

  • Rodríguez-Gironés, M.A. & Santamaría, L. (2006). A new algorithm to calculate the nestedness temperature of presence-absence matrices. Journal of Biogeography, 33, 924-935.Google Scholar

  • Sanders, M., Gotelli, N.J., Heller, N.E., Gordon, D.M. (2003). Community disassembly by an invasive species. PNAS, 100(4), 2474-2477.CrossrefGoogle Scholar

  • Sanderson, J.G., Moulton, M.P. & Selfridge, R.G. (1998). Null matrices and the analysis of species co-occurrences. Oecologia, 116, 275-283.Google Scholar

  • Schatz, A. (1963). The importance of metal-binding phenomena in the chemistry and microbiology of the soil. I. The chelating properties of lichens and lichen acids. Advancing Frontiers in Plant Science, 6, 113-134.Google Scholar

  • Seghedi, A. (2012). Paleozoic formations in Dobrogea and Pre-Dobrogea. Turkish J. Earth Sci., 21, 669-721.Google Scholar

  • Simberloff, D. & Martin, J.-L. (1991). Nestedness of insular avifauna: simple summary statistics masking complex species patterns. Ornis Fennica, 68, 178-192.Google Scholar

  • Sparrius, L.B. (2004). Ammonia as a key factor for the composition of epiphytic lichen communities. The 5th Symposium Lichens in Focus, 16-21 August 2004, Tartu, Estonia.Google Scholar

  • Stone, L. & Roberts, A. (1990). The checkerboard score and species distributions. Oecologia, 85, 74-79.CrossrefGoogle Scholar

  • Ulrich, W. & Almeida-Neto, M. (2012). On the meaning of nestedness: back to the basics. Ecography, 35(10), 865-871.CrossrefGoogle Scholar

  • Ulrich, W., Almeida-Neto, M. & Gotelli, J. (2009). A consumer’s guide to nestedness analysis. Oikos, 118, 3-17.CrossrefGoogle Scholar

  • Ulrich, W. & Gotelli, N.J. (2007). Null model analysis of species nestedness patterns. Ecology, 88, 1824-1831.CrossrefGoogle Scholar

  • Vásquez, D.P., Poulin, R., Krasnov, B.R. & Shenbrot, G.I. (2005). Species abundance patterns and the distribution of specialization in host-parasite interaction networks. J. Anim. Ecol., 7(5), 946-955.Google Scholar

  • Weiher, E. & Keddy, P. (eds.) (1999). Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge: Cambridge University Press.Google Scholar

  • Will-Wolf, S., Hawksworth, D.L., McCune, B., Rosentreter, R. & Sipman, H.J.M. (2004). Lichenized Fungi. In G. M. Mueller, G.F. Bills & M.S. Foster (eds.). Biodiversity of Fungi: Inventory and Monitoring Methods (pp. 173-195). Amsterdam: Elsevier Academic Press.Google Scholar

  • Wolseley, P., Stoffer, S., Mitchell, R., Truscott, A.M., Vanbergen, A., Chemonides, J. & Scheidegger, C. (2006). Variation of lichen communities with land use in Aberdeenshire, UK. The Lichenologist, 38(4), 307-322.CrossrefGoogle Scholar

  • Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative analysis of nested subset patterns of species composition. Oecologia, 113, 1-20.Google Scholar

  • Yazici, K. & Aslan, A. (2006). Lichen taxonomic composition from Mustafa Kemalpaşa. Bursa district (Turkey). Acta Bot. Croat., 65(1), 25-39. Google Scholar

About the article

Received: 2014-11-27

Accepted: 2015-02-02

Published Online: 2016-03-02

Published in Print: 2015-11-01

Citation Information: Acta Horti Botanici Bucurestiensis, Volume 42, Issue 1, Pages 67–86, ISSN (Online) 2359-7089, DOI: https://doi.org/10.1515/ahbb-2015-0001.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in