Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Horticulturae et Regiotecturae

The Scientific Journal for Horticulture, Landscape Engineering and Architecture

2 Issues per year

Open Access
See all formats and pricing
More options …

The Adaptive Ability of Cornus Stolonifera Michx. ´Kelseyi´ in Changing Environment

Daniela Bartošová Krajčovičová / Viera Šajbidorová
Published Online: 2014-06-13 | DOI: https://doi.org/10.2478/ahr-2014-0006


Water represents one of the limiting environmental factors having impact on all the processes in plants. Water stress is considered as the most significant cause of photosynthesis defects. Measuring fluorescence of chlorophyll a is one of the methods revealing defects in the photosynthetic aparatus. The examination has been carried out on the plants Cornus stolonifera Michx. ´KELSEYI´ cultivated in two different irrigation regimes (a regime with 40% substrate saturation and a controlling regime with 60% substrate saturation). We have used a fluorometer HANSATECH FMS 1 to measure modulated fluorescence of chlorophyll a. A three-week period of measurement was set between June and August during two years of experiments (2011 and 2012). The selected chlorophyll fluorescence parameters Fv /Fm - maximum quantum efficiency of PSII; ΦPSII - effective quantum yield of PSII; Rfd - chlorophyll fluorescence decrease ratio and NPQ - non-photochemical chlorophyll fluorescence quenching, proved to be insensitive to given water deficit. Cornus stolonifera Michx. ´KELSEY´ appears to be a woody plant capable of water efficiency.

Keywords : Cornus stolonifera Michx. ´KELSEYI´; water deficit; adaptation mechanisms


  • BAUERLE, W. I. - DUDLEY, J. B. - GRIMES, L. W. 2003. Genotypic variability in photosynthesis, water use and light absorption among Red and Freeman Maple cultivars in response to drought stress. In: Journal of the American society for horticulture science, vol. 128, 2003. no. 3, p. 337-342.Google Scholar

  • BJORKMAN, O. - DEMMING, B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. In: Planta, vol. 170, 1987, no. 4, p. 489-504.Google Scholar

  • GALLE, A. - FELLER, U. 2007. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. In: Physiologia Plantarum, vol. 131, 2007. p. 412-421.Web of ScienceGoogle Scholar

  • HLIZOVA, E. 2008. Využiti fluorescence chlorofylu ke sledovani fyziologickeho stavu vegetace. Bakalarska praca. Praha : Univerzita Karlova, 2008, 34 p.Google Scholar

  • LICHTENTHALER, H. K. 1997. Fluorescence imaging as a diagnostic tool for plant stress. In: Trends in plant science, vol. 2, 1997, no. 8, p. 316-320.Google Scholar

  • LICHTENTHALER, H. K. 2000. Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. In: Plant Physiology and Biochemistry, vol. 38, 2000, no. 11, p. 889-895.Google Scholar

  • LICHTENTHALER, H. K. - RINDERLE, U. 1988. Chlorophyll fluorescence signatures as vitality indicators in forest decline research. In: Applications of chlorophyll fluorescence. Kluwer Academic Publishers, 1988, p. 143-149.Google Scholar

  • LICHTENTHLALER, H. K. - BUSCHMANN, C. - KNAPP, M. 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R-Fd of leaves with the PAM fluorometer. In: Photosynthetica, vol. 43, 2005, p. 379-393.Google Scholar

  • MUNNE-BOSCH, S. - SCHWARZ, K. - ALEGRE, L. 1999. Enhanced formation of α-tocopherol and highly oxidized abietane dipertenes in water-stressed Rosemary plants. In: Plant Physiology, vol. 121, 1999, p. 1047-1052.Google Scholar

  • NAUMANN, J. C. - YOUNG, D. R. - ANDERSON, J. E. 2007. Linking leaf chlorophyll fluorescence properties to physiological response for detection of salt and drought stress in coastal plant species. In: Physiologia plantarum, vol. 131, 2007, p. 422-433.Web of ScienceGoogle Scholar

  • NIINEMETS, U. - KULL, O. 2001. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduos forest canopy: Photosystem II center openness, nono-radiative energy dissipation and excess irradiance under field conditions. In: Tree Physiology, vol. 21, 2001, p. 899-914.Google Scholar

  • PEGUERO-PINA, J. J. - MORALES, F. - FLEXAS, J. - GIL-PELEGRIN, E. - MOYA, I. 2008. Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. In: Oecologia, vol. 156, 2008, p. 1-11.Web of ScienceGoogle Scholar

  • PUKACKI, P. M. - MODRZYŃSKI, J. 1988. The influence of ultraviolet-B radiaton on the growth, pigment production and chlorophyll fluorescence of Norway spruce seedlings. In: Acta Physiologiae Plantarum, vol. 20, 1988, no. 3, p. 245-250.Google Scholar

  • TOMEKOVA, B. 2010. Fenologia a fluorescencia chlorofylu jaseňa mannoveho rastuceho v Arborete Borova hora. Diplomova praca. Zvolen : Technicka univerzita, 2010. s. 97.Google Scholar

  • VAŇOVA, L. - KUMMEROVA, M. 2006. Use of chlorophyll fluorescence for indication of stress in lower and higher plants. In: Vliv abiotickych a biotickych stresorů na vlastnosti rostlin 2006 : sbornik přispěvků. Praha: Česka zemědelska univerzita, 2006. no. 1, p. 300. ISBN 80-213-1484-2.Google Scholar

About the article

Published Online: 2014-06-13

Published in Print: 2014-05-01

Citation Information: Acta Horticulturae et Regiotectuare, ISSN (Online) 1338-5259, DOI: https://doi.org/10.2478/ahr-2014-0006.

Export Citation

© 2014. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in