Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Horticulturae et Regiotecturae

The Scientific Journal for Horticulture, Landscape Engineering and Architecture

2 Issues per year

Open Access
Online
ISSN
1338-5259
See all formats and pricing
More options …

Land Use Dataset Collection And Publication Based On Lucas And Hilucs

Marcel KLIMENT / Jakub KOČICA / Tomáš KLIMENT
Published Online: 2015-03-01 | DOI: https://doi.org/10.1515/ahr-2014-0013

Abstract

Spatial data have become very important phenomena within the last decade in Europe due to a strong support from the political spectrum with regard to related legislation and resulting in financial support to several research, educational, and enlargement projects. INSPIRE (Infrastructure for Spatial Information in the European Community) Directive indeed defines the principles for the harmonization of spatial data infrastructure in the European community, including Land Use and Land Cover data themes. INSPIRE defines a methodology on how to transform datasets to common data models, but it does not cover the process of data collection and update, because it is out of its scope. Evaluation of the Land Use dataset derived from remote sensing products complemented by fieldworks has been realized since 2006 by Eurostat within the LUCAS (Land Use and Cover Area frame Survey) project. The work presented in this paper follows the LUCAS fieldwork methodology, which was applied during the fieldwork in July 2014 in the City of Zagreb (Croatia), to use at the local (municipal) geoportal level. The surveying groups collected point features with the following data type attributes: Land Use codes defined by HILUCS (Hierarchical INSPIRE Land Use Classification System) and optional Land Cover codes defined by LUCAS classification. In addition, photographs representing the observed areas were collected by cameras embedded in the mobile GIS platforms. An update of original topological layer was performed and Web GIS components for sharing the newly developed datasets were implemented. The results presented provide a suitable proposal for fieldworks methodology and updates of a land use database in line with the INSPIRE directive applicable at a local spatial data infrastructure level.

Keywords: Land Use; INSPIRE; LUCAS; Web GIS; Local SDI

References

  • BENNER, J. – HÄFELE, K. H. – GEIGER, A. 2013. Transnational Planning Support by the European Geodata Infrastructure INSPIRE. Proceedings. In: REAL CORP 2013: Planning Times (M. Schrenk, V. Popovich, P. Zeile, P. Elisei) (eds.). Rome, Italy : REAL CORP, 2013, pp. 1009–1017. ISBN 978-3-9503110-4-4.Google Scholar

  • CETL, V. – ROIĆ, M. – MASTELIĆ-IVIĆ, S. 2009. Creation of an NSDI strategy – Case Study Croatia. In International Journal of Spatial Data Infrastructures Research, vol. 4, 2009. pp. 96–110. ISSN 1725-0463.Google Scholar

  • COOPER, A. K. – RAPANT, P. – HJELMAGER, J. – LAURENT, D. – IWANIAK, A. – COETZEE, S. – DÜREN, U. 2011. Extending the formal model of a spatial data infrastructure to include volunteered geographical information. In: 25th International Cartographic Conference (ICC 2011). Paris, France, 3–8 July 2011.Google Scholar

  • EUROSTAT. 2013. Methodology of the LUCAS survey. Available at http://epp.eurostat.ec.europa.eu/portal/page/portal/lucas/methodology.

  • GALLEGO, J. – BAMPS, C. 2008. Using CORINE land cover and the point survey LUCAS for area estimation. In International Journal of Applied Earth Observation and Geoinformation, vol. 10, 2008, no. 4, pp. 467–475. ISSN 0303-2434.CrossrefWeb of ScienceGoogle Scholar

  • GASPERI, J. – PEYREGA, C. – DINOT, S. – BOILEAU, Q. – MANIN, A. – HEURTEAUX, V. 2013. Web Processing Service for assisted land cover classification. In EGU General Assembly Conference Abstracts. Vienna, Austria : EGU, vol. 15, 2013, pp. 6087.Google Scholar

  • GIANNECCHINI, S. – AIME, A. 2013. GeoServer, the Open Source server for interoperable spatial data handling. In: SDI 2013 Proceedings. Croatia, Zagreb : State Geodetic Administration, Zagreb, Croatia, 2013. pp. 14–22. ISBN 978-953-293-519-6.Google Scholar

  • GRANELL, C. – GOULD, M. – MANSO, M. A. – BERNABÉ, M. A. 2009. Spatial Data Infrastructures. In: Handbook of research on Geoinformatics (Hassan a. Karimi) (ed). Hersey PA : IGI Global, 2009. pp. 36–41. ISBN 978-159-140-9960.Google Scholar

  • LACKÓOVÁ, L. – KONDRLOVÁ, E. – STREĎANSKÝ, J. – URBAN, T. – STREĎANSKÁ, A. 2013. Comparison of rill erosion modelling according ULSE equation and Mitašová methodology and parameters in GIS using various crop management. In Acta scientiarum Polonorum, vol. 12, 2013, no. 3, pp. 11–19. ISSN 1644-0765.Google Scholar

  • MANAKOS, I. – BRAUN, M. 2014. Land Use and Land Cover Mapping in Europe. Practices & Trends. In Remote Sensing and Digital Image Processing, vol. 18, 2014, pp. 437. ISBN 978-94-007-7968-6Google Scholar

  • MUCHOVÁ, Z. – PETROVIČ, F. 2014. Impact of land consolidation on the visual characteristics (scenery) of a landscape. In Journal of Central European Agriculture (Online), vol. 15, 2014, no. 1, pp. 76–85. ISSN 1332-9049.Google Scholar

  • NEDOVIC-BUDIC, Z. – FEENEY, M. E. F. – RAJABIFARD, A. – WILLIAMSON, I. 2004. Are SDIs serving the needs of local planning? Case study of Victoria, Australia and Illinois, USA. In Computers, Environment and Urban Systems, vol. 28, 2004, no. 4, pp. 329–351. ISSN 0198-9715.Google Scholar

  • OBE, O. R. – HSU, S. L. 2011. PostGIS in action. New York, USA : Manning Publications Co, 2011. 520 p. ISBN 9781935182269.Google Scholar

  • RUSMORE, M. E. 2002. Teaching Advanced Field Mapping on Hand – Held Computers. In 2002 Denver Annual Meeting.Google Scholar

  • STREĎANSKÁ, A. – MUCHOVÁ, Z. – KONC, L’. 2013. Bonitácia a cena pôdy v pozemkových úpravách. 1. vyd. Nitra : SPU, 2013. 228 s. ISBN 978-80-552-1129-9.Google Scholar

  • TSOU, M. H. – SMITH, J. 2011. Free and Open Source software for GIS education. In: Unpublished White Paper Prepared for the GeoTech Center. Louisville, USA : NGTCE. 18 p. Available at http://www.iapad.org/publications/ppgis/tsou_free-GIS-foreducators-whitepaper.pdf.

  • URBAN, T. – LACKÓOVÁ, L. – HALÁSZOVÁ, K. – STREĎANSKÝ, J. 2013. Wind erosion in the agricultural landscape : the wind erosion equation used in GIS. 1st ed. Kraków, Poland : Uniwersytet Rolniczy, 2013. 109 p. ISBN 978-83-60633-97-7.Google Scholar

  • VILCHES-BLÁZQUEZ, L. M. – VILLAZÓN-TERRAZAS, B. – SAQUICELA, V. – DE LEÓN, A. – CORCHO, O. – GÓMEZ-PÉREZ, A. 2010. GeoLinked data and INSPIRE through an application case. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, USA : ACM, 2010. pp. 446–449. ISBN 978-1-4503-0428-3.Google Scholar

  • WANG, H. – SONG, Y. – HAMILTON, A. – CURWELL, S. 2007. Urban information integration for advanced e-Planning in Europe. In Government Information Quarterly, vol. 24, 2007, no. 4, pp. 736–754. ISSN 0740-624X.Google Scholar

  • ESRI ArcPad. http://www.esri.com/software/arcgis/arcpad

About the article

Published Online: 2015-03-01

Published in Print: 2014-11-01


Citation Information: Acta Horticulturae et Regiotectuare, ISSN (Online) 1338-5259, DOI: https://doi.org/10.1515/ahr-2014-0013.

Export Citation

© Marcel KLIMENT, Jakub KOČICA, Tomáš KLIMENT. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in