Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of the Alexandru Ioan Cuza University - Mathematics

The Journal of "Alexandru Ioan Cuza" University from Iasi

Editor-in-Chief: Oniciuc, Cezar

2 Issues per year


CiteScore 2016: 0.34

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.488

Mathematical Citation Quotient (MCQ) 2015: 0.10

Open Access
Online
ISSN
1221-8421
See all formats and pricing
More options …

On Pseudo Ricci Symmetric Manifolds

Uday De / Abul Gazi
Published Online: 2012-04-26 | DOI: https://doi.org/10.2478/v10157-012-0001-3

On Pseudo Ricci Symmetric Manifolds

The object of the present paper is to study pseudo Ricci symmetric manifolds. Among others we obtain a sufficient condition for a pseudo Ricci symmetric manifold to be a quasi Einstein manifold. We prove that in a pseudo Ricci symmetric quasi Einstein manifold the scalar curvature vanishes and pseudo Ricci symmetric quasi Einstein perfect fluid spacetime has also been considered. Also we construct two examples of pseudo Ricci symmetric manifolds to justify our theorems.

Keywords: quasi Einstein manifold; pseudo Ricci symmetric manifold; pseudo Ricci symmetric quasi Einstein perfect fluid spacetime

  • Chaki, M. C. - On pseudo Ricci symmetric manifolds, Bulgar. J. Phys., 15 (1988), 526-531.Google Scholar

  • Chaki, M. C.; Ray, S. - Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys., 35 (1996), 1027-1032.Google Scholar

  • Chaki, M. C.; Tarafdar, M. - On conformally flat pseudo-Ricci symmetric manifolds, Period. Math. Hungar., 19 (1988), 209-215.CrossrefGoogle Scholar

  • Chaki, M. C.; Maity, R. K. - On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297-306.Google Scholar

  • De, U. C.; De, B. K. - On quasi Einstein manifolds, Commun. Korean Math. Soc., 23 (2008), 413-420.CrossrefGoogle Scholar

  • De, U. C.; Ghosh, G. C. - On quasi Einstein manifolds, Period. Math. Hungar., 48 (2004), 223-231.Google Scholar

  • De, U. C.; Ghosh, G. C. - On quasi Einstein and special quasi Einstein manifolds, Proc. of the Int. Conf. of Mathematics and its applications, Kuwait University, April 5-7, 2004, 178-191.Google Scholar

  • De, U. C.; Ghosh, G. C. - On conformally flat special quasi Einstein manifolds, Publ. Math. Debrecen, 66 (2005), 129-136.Google Scholar

  • Deszcz, R.; Hotloś, M.; Şentürk, Z. - On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math., 27 (2001), 375-389.Google Scholar

  • O'Neill, B. - Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983.Google Scholar

  • Özen, F.; Altay, S. - On weakly and pseudo-symmetric Riemannian spaces, Indian J. Pure Appl. Math., 33 (2002), 1477-1488.Google Scholar

  • Roter, W. - On conformally symmetric Ricci-recurrent spaces, Colloq. Math., 31 (1974), 87-96.Google Scholar

  • Ray-Guha, S. - On perfect fluid pseudo Ricci symmetric space-time, Tensor (N. S.), 67 (2006), 101-107.Google Scholar

  • Schouten, J. A. - Ricci-Calculus. An introduction to Tensor Analysis and its Geometrical Applications, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.Google Scholar

  • Sen, R. N.; Chaki, M. C. - On curvature restrictions of a certain kind of conformally-flat Riemannian space of class one, Proc. Nat. Inst. Sci. India Part A, 33 (1967), 100-102.Google Scholar

  • Tamássy, L.; Binh, T. Q. - On weak symmetries of Einstein and Sasakian manifolds, International Conference on Differential Geometry and its Applications (Bucharest, 1992), Tensor (N. S.), 53 (1993), Commemoration Volume I, 140-148.Google Scholar

  • Yano, K.; Kon, M. - Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.Google Scholar

About the article


Published Online: 2012-04-26

Published in Print: 2012-01-01


Citation Information: Annals of the Alexandru Ioan Cuza University - Mathematics, ISSN (Print) 1221-8421, DOI: https://doi.org/10.2478/v10157-012-0001-3.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in