1. Anikonov, Yu. E.; Lorenzi, A. - Explicit representation for the solution to a parabolic differential identification problem in a Banach space, J. Inverse Ill-Posed Probl., 15 (2007), 669-681.Google Scholar

2. Burlică, M.; Ros¸u, D. - A class of nonlinear delay evolution equations with nonlocal initial conditions, Proc. Amer. Math. Soc., in print.Web of ScienceGoogle Scholar

3. Di Blasio, G.; Lorenzi, A. - Identification problems for integro-differential delay equations, Differential Integral Equations, 16 (2003), 1385-1408. Google Scholar

4. Di Blasio, G.; Lorenzi, A. - Recovering memory kernels in retarded functional differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 12 (2005), 837-856.Google Scholar

5. Di Blasio, G.; Lorenzi, A. - Identification problems for parabolic delay differential equations with measurement on the boundary, J. Inverse Ill-Posed Probl., 15 (2007), 709-734.Google Scholar

6. Lorenzi, A.; Vrabie, I.I. - An identification problem for a linear evolution equation in a Banach space and applications, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 671-691.Google Scholar

7. Lorenzi, A.; Vrabie, I.I. - Identification for a semilinear evolution equation in a Banach space, Inverse Problems, 26 (2010), 085009, 16 pp.Google Scholar

8. Lorenzi, A.; Vrabie I.I. - An identification problem for a nonlinear evolution equa- tion in a Banach space, Appl. Anal., 91 (2012), 1583-1604.CrossrefGoogle Scholar

9. Lorenzi, A.; Vrabie, I.I. - An identification problem for a Semilinear Evolution Delay Equation, submitted for publication.Google Scholar

10. Mitidieri, E.; Vrabie, I.I. - Existence for nonlinear functional differential equa- tions, Hiroshima Math. J., 17 (1987), 627-649.Google Scholar

11. Pazy, A. - Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical sciences, 44, Springer Verlag, New York, 1983.Google Scholar

12. Vrabie, I.I. - Compactness methods for an abstract nonlinear Volterra integro- differential equation, Nonlinear Anal., 5 (1981), 355-371.Google Scholar

13. Vrabie, I.I. - Compactness Methods for Nonlinear Evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics, 75, Second Edition, Longman John Wiley&Sons Inc., New York, 1995.Google Scholar

14. Vrabie, I.I. - C0-Semigroups and Applications, North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam, 2003. Google Scholar

## Comments (0)