Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of the Alexandru Ioan Cuza University - Mathematics

The Journal of "Alexandru Ioan Cuza" University from Iasi

Editor-in-Chief: Oniciuc, Cezar

2 Issues per year


CiteScore 2016: 0.34

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.488

Mathematical Citation Quotient (MCQ) 2015: 0.10

Open Access
Online
ISSN
1221-8421
See all formats and pricing
More options …

Time-Like Loxodromes on Rotational Surfaces in Minkowski 3-Space

Murat Babaarslan / Marian Ioan Munteanu
  • Corresponding author
  • “Al.I. Cuza” University of Iaşi, Faculty of Mathematics, Bd. Carol I, no. 11, 700506 Iaşi, ROMANIA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-20 | DOI: https://doi.org/10.2478/aicu-2013-0021

Abstract

In this paper we compute all time-like loxodromes on rotational surfaces in the Minkowski 3-space having all meridians of time-like, respectively of space-like causality. We draw also some pictures for a better understanding of how loxodromes look like.

Keywords : loxodrome; Minkowski space; Lorentzian screw motion

  • 1. Alexander, J. - Loxodromes: a rhumb way to go, Math. Mag., 77 (2004), 349-356.Google Scholar

  • 2. Carlton-Wippern, K.C. - On loxodromic navigation, J. Navigation, 45 (1992), 292-297.Google Scholar

  • 3. Gudmundson, G.A.; Alerstam, T. - Optimap map projections for analysing longdistancemigration routes, J. Avian Biology, 29 (1998), 597-605.Google Scholar

  • 4. Hano, J.; Nomizu, K. - Surfaces of revolution with constant mean curvature inLorentz-Minkowski space, Tohoku Math. J., 36 (1984), 427-437.Google Scholar

  • 5. Ji, F.; Kim, Y.H. - Mean curvatures and Gauss maps of a pair of isometric helicoidaland rotation surfaces in Minkowski 3-space, J. Math. Anal. Appl., 368 (2010), 623-635.Web of ScienceGoogle Scholar

  • 6. Kühnel, W. - Differential Geometry. Curves-Surfaces-Manifolds (second edition), Student Mathematical Library, 16, American Mathematical Society, Providence, RI, 2006.Google Scholar

  • 7. López, R. - Differential geometry of curves and surfaces in Lorentz-Minkowski space, arXiv:0810.3351v1 [math.DG].Google Scholar

  • 8. Monmonier, M.S. - Rhumb Lines and Map Wars: A Social History of the MercatorProjection, University of Chicago Press, 2004.Google Scholar

  • 9. Munteanu, M.I.; Nistor, A.I. - Surfaces in E3 making constant angle with Killingvector fields, Internat. J. Math., 23 (2012), 1250023, 16 pp.Google Scholar

  • 10. Noble, C.A. - Note on loxodromes, Bull. Amer. Math. Soc., 12 (1905), 116-119.Google Scholar

  • 11. Ratcliffe, J.G. - Foundations of Hyperbolic Manifolds, Second edition, Graduate Texts in Mathematics, 149, Springer, New York, 2006.Google Scholar

  • 12. Rickey, V.F.; Tuchinsky, P.M. - An application of geography to mathematics:history of the integral of the secant, Math. Mag., 53 (1980), 162-166. Google Scholar

About the article

Published Online: 2013-10-20


Citation Information: Annals of the Alexandru Ioan Cuza University - Mathematics, ISSN (Online) , ISSN (Print) 1221-8421, DOI: https://doi.org/10.2478/aicu-2013-0021.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in