1. Alexander, J. - *Loxodromes: a rhumb way to go*, Math. Mag., 77 (2004), 349-356.Google Scholar

2. Carlton-Wippern, K.C. - *On loxodromic navigation*, J. Navigation, 45 (1992), 292-297.Google Scholar

3. Gudmundson, G.A.; Alerstam, T. - *Optimap map projections for analysing longdistance**migration routes*, J. Avian Biology, 29 (1998), 597-605.Google Scholar

4. Hano, J.; Nomizu, K. - *Surfaces of revolution with constant mean curvature in**Lorentz-Minkowski space*, Tohoku Math. J., 36 (1984), 427-437.Google Scholar

5. Ji, F.; Kim, Y.H. - *Mean curvatures and Gauss maps of a pair of isometric helicoidal**and rotation surfaces in Minkowski 3-space*, J. Math. Anal. Appl., 368 (2010), 623-635.Web of ScienceGoogle Scholar

6. Kühnel, W. - *Differential Geometry. Curves-Surfaces-Manifolds *(second edition), Student Mathematical Library, 16, American Mathematical Society, Providence, RI, 2006.Google Scholar

7. López, R. - *Differential geometry of curves and surfaces in Lorentz-Minkowski space*, arXiv:0810.3351v1 [math.DG].Google Scholar

8. Monmonier, M.S. - *Rhumb Lines and Map Wars: A Social History of the Mercator**Projection*, University of Chicago Press, 2004.Google Scholar

9. Munteanu, M.I.; Nistor, A.I. - *Surfaces in *E3 *making constant angle with Killing**vector fields*, Internat. J. Math., 23 (2012), 1250023, 16 pp.Google Scholar

10. Noble, C.A. - *Note on loxodromes*, Bull. Amer. Math. Soc., 12 (1905), 116-119.Google Scholar

11. Ratcliffe, J.G. - *Foundations of Hyperbolic Manifolds*, Second edition, Graduate Texts in Mathematics, 149, Springer, New York, 2006.Google Scholar

12. Rickey, V.F.; Tuchinsky, P.M. - *An application of geography to mathematics:**history of the integral of the secant*, Math. Mag., 53 (1980), 162-166. Google Scholar

## Comments (0)