1. Aydi, H.; Abbas, M.; Postolache, M. - Coupled coincidence points for hybrid pair of mappings via mixed monotone property, J. Adv. Math. Stud., 5 (2012), 118-126.Google Scholar

2. Berinde, M.; Berinde, V. - On a general class of multi-valued weakly Picard mappings , J. Math. Anal. Appl., 326 (2007), 772-782.Google Scholar

3. Chaipunya, P.; Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. - Fixed-point theorems for multivalued mappings in modular metric spaces, Abstr. Appl. Anal., 2012, Art. ID 503504, 14 pp.Google Scholar

4. Cho, S.-H.; Bae, J.-S. - Fixed point theorems for multivalued maps in cone metric spaces, Fixed Point Theory Appl., 2011, 2011:87, 7 pp.CrossrefGoogle Scholar

5. Ćirić, L.B.; Pre_sić, S.B. - On Preˇsi´c type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenian. (N.S.), 76 (2007), 143-147.Google Scholar

6. Du, W.-S. - Critical point theorems for nonlinear dynamical systems and their applications , Fixed Point Theory Appl., 2010, Art. ID 246382, 16 pp.CrossrefGoogle Scholar

7. Elamrani, M.; Mehdaoui, B. - Common fixed point theorems for compatible and weakly compatible mappings, Rev. Colombiana Mat., 34 (2000), 25-33.Google Scholar

8. Eshaghi Gordji, M.; Baghani, H.; Khodaei, H.; Ramezani, M. - A generalization of Nadler’s fixed point theorem, J. Nonlinear Sci. Appl., 3 (2010), 148-151.Google Scholar

9. George, Reny; Reshma, K.P.; Rajagopalan, R. - A generalised fixed point theorem of Presic type in cone metric spaces and application to Markov process, Fixed Point Theory Appl., 2011, 2011:85, 8 pp.CrossrefWeb of ScienceGoogle Scholar

10. Mizoguchi, N.; Takahashi, W. - Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177-188.Google Scholar

11. Nadler, S.B. Jr. - Multi-valued contraction mappings, Pacić J. Math., 30 (1969), 475-488.Google Scholar

12. Păcurar, M. - A multi-step iterative method for approximating common fixed points of Presi´c-Rus type operators on metric spaces, Stud. Univ. Babe_s-Bolyai Math., 55 (2010), 149-162.Google Scholar

13. Prešić, S.B. - Sur la convergence des suites, C.R. Acad. Sci. Paris, 260 (1965), 3828-3830.Google Scholar

14. Prešić, S.B. - Sur une classe d’in´equations aux diff´erences finies et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd) (N.S.), 5 (1965), 75-78.Google Scholar

15. Radenović, S.; Simić, S.; Cakić, N.; Golubović, Z. - A note on tvs-cone metric fixed point theory, Math. Comput. Modelling, 54 (2011), 2418-2422.Web of ScienceGoogle Scholar

16. Wardowski, D. - On set-valued contractions of Nadler type in cone metric spaces, Appl. Math. Lett., 24 (2011), 275-278.Web of ScienceGoogle Scholar

Google Scholar

## Comments (0)