ON SOME APPLICATIONS OF LIU-OWA OPERATOR

BY

ALI MUHAMMAD

Abstract. In this paper, we introduce some new subclasses of multivalent analytic functions in the unit disc and investigate several inclusion relationships, radius problems, and some other interesting properties of \(p \)-valent functions which are defined here by means of a certain integral operator \(Q^n_{p,p}f(z) \).

Mathematics Subject Classification 2010: 30C45, 30C50.

Key words: multivalent functions, analytic functions, Liu and Owa operator, functions with positive real part, Hadamard product.

1. Introduction

Let \(A(p) \) denotes the class of functions \(f(z) \) normalized by

\[
(1.1) \quad f(z) = z^p + \sum_{k=1}^{\infty} a_{k+p} z^{k+p}, \quad (p \in \mathbb{N} = \{1, 2, \ldots\}),
\]

which are analytic and \(p \)-valent in the open unit disc \(E = \{z : |z| < 1\} \).

Let \(P_k(\rho) \) be the class of functions \(p(z) \) analytic in \(E \) with \(p(0) = 1 \) and

\[
(1.2) \quad \int_0^{2\pi} \left| \Re \frac{p(z)-\rho}{1-\rho} \right| d\theta \leq k\pi, \quad z = re^{i\theta},
\]

where \(k \geq 2 \) and \(0 \leq \rho < 1 \). This class was introduced by Padmanabhan et al. (see [7]). We note that \(P_k(0) = P_k \), see Pinchuk [9], \(P_2(\rho) = P(\rho) \), the class of analytic functions with positive real part greater than \(\rho \) and \(P_2(0) = P \), the class of functions with positive real part. From (1.2) we can
easily deduce that \(p(z) \in P_k(p) \) if and only if there exists \(p_1(z), p_2(z) \in P(p) \) such that for \(z \in E \),

\[
(1.3) \quad \quad p(z) = \left(\frac{k}{4} + \frac{1}{2} \right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_2(z).
\]

For functions \(f_j(z) \in \mathcal{A}(p) \), given by

\[
(1.4) \quad \quad f_j(z) = z^p + \sum_{k=1}^{\infty} a_{k+p,j} z^{k+p} \quad (j = 1, 2),
\]

we define the Hadamard product (or convolution) of \(f_1(z) \) and \(f_2(z) \) by

\[
(1.5) \quad \quad (f_1 \ast f_2)(z) = z^p + \sum_{k=1}^{\infty} a_{k+p,1} a_{k+p,2} z^{k+p} = (f_2 \ast f_1)(z) \quad (z \in E).
\]

Motivated by Jung et al. [2], Liu and Owa [4] considered the linear operator \(Q_{\alpha, p}^{\beta} : \mathcal{A}(p) \rightarrow \mathcal{A}(p) \) defined as follows:

\[
(1.6) \quad Q_{\alpha, p}^{\beta} f(z) = \left(\frac{p + \alpha + \beta - 1}{p + \beta - 1} \right) \frac{\alpha}{z^\beta} \int_0^z \left(1 - \frac{t}{z} \right)^{\alpha-1} t^{\beta-1} f(t) dt,
\]

for \(\alpha > 0, \beta > -1 \), and

\[
(1.7) \quad Q_{0, P}^{\beta} f(z) = f(z), \quad \text{for} \quad \alpha = 0, \beta > -1.
\]

We note that if \(f \in \mathcal{A}(p) \), then from (1.6) and (1.7) it follows that

\[
Q_{\alpha, p}^{\beta} f(z) = z^p + \frac{\Gamma(p + \alpha + \beta)}{\Gamma(p + \beta)} \sum_{k=p+1}^{\infty} \frac{\Gamma(k + \beta)}{\Gamma(k + \alpha + \beta)} a^{k+p},
\]

whenever \(\alpha \geq 0 \) and \(\beta > -1 \). Using the above relation, it is easy to verify that

\[
(1.8) \quad z(Q_{\alpha, p}^{\beta} f(z))' = (p + \alpha + \beta - 1)Q_{\alpha, p}^{\beta-1} f(z) - (\alpha + \beta - 1)Q_{\alpha, p}^{\beta} f(z).
\]

For the interested readers we refer to the work done by the authors [1, 3].

Using the operator \(Q_{\alpha, p}^{\beta} \), we now define a subclasses of \(\mathcal{A}(p) \) as follows:
Definition 1.1. Assume that $\alpha \geq 0$, $\beta > -1$, $\lambda \in \mathbb{C}^* = \mathbb{C}\setminus\{0\}$, $p \in \mathbb{N}$, we say that a function $f(z) \in A(p)$ is in the class $T^\alpha_{\beta,p,k}(\lambda, \rho)$ if it satisfies:

$$
\left\{ \frac{\lambda}{p} \left(\frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} \right) + \frac{p - \lambda}{p} \left(\frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} \right)' \right\} \in P_k(\rho), \quad z \in E,
$$

where $k \geq 2$, $0 \leq \rho < p$.

Definition 1.2. Let $f \in A(p)$. Then $f \in B^\alpha_{\beta,p,k}(\lambda, \rho)$, if and only if

$$
\left\{ (1 - \lambda) \frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} + \frac{\lambda}{p} \frac{(Q^{\alpha}_{\beta,p} f(z))'}{z^{p-1}} \right\} \in P_k(\rho),
$$

where λ is a complex number, $k \geq 2$, $z \in E$, $0 \leq \rho < p$.

In the present paper, we investigate several number of inclusion relationships, radius problems, and some other interesting properties of p-valent functions which are defined here by means of a certain integral operator $Q^{\alpha}_{\beta,p} f(z)$.

2. Preliminaries lemmas

In this section we recall some known results.

Lemma 2.1 ([10]). If $p(z)$ is analytic in E with $p(0) = 1$, and if λ_1 is a complex number satisfying $\Re(\lambda_1) \geq 0$ ($\lambda_1 \neq 0$), then $\Re \{p(z) + \lambda_1 z p'(z)\} > \delta$, $(0 \leq \delta < 1)$. Implies $\Re p(z) > \delta + (1 - \delta)(2\gamma - 1)$, where γ is given by $\gamma = \gamma(\Re \lambda_1) = \int_0^1 (1 + t^{2\Re \lambda_1})^{-1} dt$, which is an increasing function of $\Re \lambda_1$ and $\frac{1}{2} \leq \gamma < 1$. The estimate is sharp in the sense that the bound cannot be improved.

Lemma 2.2 ([11]). If $p(z)$ is analytic in E, $p(0) = 1$ and $\Re p(z) > \frac{1}{2}$, $z \in E$, then for any function F analytic in E, the function $p \ast F$ takes values in the convex hull of the image of E under F.

Lemma 2.3 ([8]). Let $p(z) = 1 + b_1 z + b_2 z^2 + \ldots \in P(\rho)$. Then $\Re p(z) \geq 2\rho - 1 + \frac{2(1 - \rho)}{1 + |z|}$.
3. Main results

Theorem 3.1. Assume that $\alpha \geq 0$, $\beta > -1$, $\lambda \in \mathbb{C}^* = \mathbb{C}\{0\}$, $p \in \mathbb{N}$. Let $f \in T^\alpha_{\beta,p,k}(\rho_1)$, $g \in T^\alpha_{\beta,p,k}(\rho_2)$, and let $F = f * g$. Then $F \in T^\alpha_{\beta,p,k}(\rho_3)$, where

$$\rho_3 = 1 - 4(1 - \rho_1)(1 - \rho_2) \left[1 - \frac{p(p + \alpha + \beta - 1)}{\lambda} \int_0^1 u^{rac{p(p + \alpha + \beta - 1)}{\lambda} - 1} \frac{1}{1 + u} \, du \right].$$

Proof. Since $f \in T^\alpha_{\beta,p,k}(\rho_1)$, it follows that

$$H(z) = \left\{ \frac{\lambda}{p} \left(\frac{Q_{\beta,p}^{\alpha-1} f(z)}{z^p} \right) + \frac{p - \lambda}{p} \left(\frac{Q_{\beta,p}^\alpha f(z)}{z^p} \right) \right\} \in P_k(\rho_1), \quad z \in E,$$

and so using identity (1.8) in the above equation, we have

$$Q_{\beta,p}^\alpha f(z) = \frac{p(p + \alpha + \beta - 1)}{\lambda} z^{p - \frac{p(p + \alpha + \beta - 1)}{\lambda}} \int_0^z t^{rac{p(p + \alpha + \beta - 1)}{\lambda} - 1} H(t) \, dt,$$

Similarly

$$Q_{\beta,p}^\alpha g(z) = \frac{p(p + \alpha + \beta - 1)}{\lambda} z^{p - \frac{p(p + \alpha + \beta - 1)}{\lambda}} \int_0^z t^{rac{p(p + \alpha + \beta - 1)}{\lambda} - 1} H^*(t) \, dt,$$

where $H^* \in P_k(\rho_2)$. Using (3.2) and (3.3), we have

$$Q_{\beta,p}^\alpha F(z) = \frac{p(p + \alpha + \beta - 1)}{\lambda} z^{p - \frac{p(p + \alpha + \beta - 1)}{\lambda}} \int_0^z t^{rac{p(p + \alpha + \beta - 1)}{\lambda} - 1} (H \ast H^*) \, dt,$$

where

$$Q(z) = \left(\frac{k}{4} + \frac{1}{2} \right) q_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) q_2(z),$$

$$H^*(z) = \left(\frac{k}{4} + \frac{1}{2} \right) h_1^*(z) - \left(\frac{k}{4} - \frac{1}{2} \right) h_2^*(z),$$

Now

$$H(z) = \left(\frac{k}{4} + \frac{1}{2} \right) h_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) h_2(z),$$
where \(h_i \in P(\rho_1) \) and \(h^*_i \in P(\rho_2), i = 1, 2. \)

Since \(P_i^* = \frac{h_i^*(z) - \rho_2}{2(1 - \rho_2)} + \frac{1}{2} \in P(\rho_2), i = 1, 2, \) we obtain that \((h_i * p_i^*) \in P(\rho_2), \) by using Herglotz formula.

Thus \((h_i * h_i^*) \in P(\rho_3), \) with

\[
(3.7) \quad \rho_3 = 1 - 2(1 - \rho_1)(1 - \rho_2).
\]

Using (3.4), (3.5), (3.6), (3.7) and Lemma 2.3, we have

\[
\Re q_i(z) = \frac{p(p + \alpha + \beta - 1)}{\lambda} \int_0^1 u^{\frac{p(p + \alpha + \beta - 1)}{\lambda} - 1} \Re \{(h_i * h_i^*)(uz)\} \, du
\]

\[
\geq \frac{p(p + \alpha + \beta - 1)}{\lambda} \int_0^1 u^{\frac{p(p + \alpha + \beta - 1)}{\lambda} - 1} \left(2\rho_3 - 1 + \frac{2(1 - \rho_3)}{1 + u|z|}\right) \, du
\]

\[
= 1 - 4(1 - \rho_1)(1 - \rho_2) \left(1 - \frac{p(p + \alpha + \beta - 1)}{\lambda} \int_0^1 u^{\frac{p(p + \alpha + \beta - 1)}{\lambda} - 1} \, du\right).
\]

From this we conclude that \(F \in T_{\beta,p,k}^\alpha(\rho_3) \) where \(\rho_3 \) is given by (3.1).

We discuss the sharpness as follows:

We take

\[
H(z) = \left(\frac{k}{4} + \frac{1}{2}\right) \frac{1 + (1 - 2\rho_1)z}{1 - z} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{1 - (1 - 2\rho_1)z}{1 + z},
\]

\[
H^*(z) = \left(\frac{k}{4} + \frac{1}{2}\right) \frac{1 + (1 - 2\rho_2)z}{1 - z} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{1 - (1 - 2\rho_2)z}{1 + z}.
\]

Since

\[
\left(\frac{1 + (1 - 2\rho_1)z}{1 - z}\right) * \left(\frac{1 + (1 - 2\rho_2)z}{1 - z}\right) = 1 - 4(1 - \rho_1)(1 - \rho_2) + \frac{4(1 - \rho_1)(1 - \rho_2)}{1 - z}.
\]

It follows from (3.5) that

\[
q_i(z) = \frac{p(p + \alpha + \beta - 1)}{\lambda} \int_0^1 u^{\frac{p(p + \alpha + \beta - 1)}{\lambda} - 1} \cdot \left\{1 - 4(1 - \rho_1)(1 - \rho_2) + \frac{4(1 - \rho_1)(1 - \rho_2)}{1 - z}\right\} \, du
\]

\[
\rightarrow 1 - 4(1 - \rho_1)(1 - \rho_2) \left[1 - \frac{p(p + \alpha + \beta - 1)}{\lambda} \int_0^1 u^{\frac{p(p + \alpha + \beta - 1)}{\lambda} - 1} \, du\right]
\]

as \(z \rightarrow -1. \)
This completes the proof. \(\square \)

Theorem 3.2. Let \(f(z) \in A(p) \), \(\lambda \in \mathbb{C} \) with \(\Re\lambda > 0 \) and define the one parameter integral operator \(J_c(c > -p) \) by

\[
J_c f(z) = \frac{c + p}{z^c} \int_0^z t^{c-1} f(t) dt \quad (f \in A(p); \quad c > -p).
\]

If

\[
(1 - \lambda) \frac{Q_{\beta,p}^\alpha J_c f(z)}{z^p} + \lambda \frac{Q_{\beta,p}^\alpha f(z)}{z^p} \in P_k(\rho),
\]
then \(\frac{Q_{\beta,p}^\alpha J_c f(z)}{z^p} \in P_k(\delta), z \in E, \) where

\[
\delta = \rho + (1 - \rho)(2\gamma_1 - 1),
\]
and \(\gamma_1 = \int_0^1 (1 + t^{\Re\frac{\lambda}{c+p}})^{-1} dt. \)

Proof. First of all it follows from the Definition 3.8 that

\[
z(Q_{\beta,p}^\alpha J_c f(z))' = (c + p)Q_{\beta,p}^\alpha f(z) - cQ_{\beta,p}^\alpha J_c f(z).
\]

Let

\[
(1 - \lambda) \frac{Q_{\beta,p}^\alpha J_c f(z)}{z^p} + \lambda \frac{Q_{\beta,p}^\alpha f(z)}{z^p} = \begin{cases} h(z) = (k + \frac{1}{2})h_1(z) - \frac{k}{2}h_2(z). \end{cases}
\]

Then, the hypothesis (3.9) in conjunction with (3.11) would yield

\[
\left\{ (1 - \lambda) \frac{Q_{\beta,p}^\alpha J_c f(z)}{z^p} + \lambda \frac{Q_{\beta,p}^\alpha f(z)}{z^p} \right\} = \left\{ h(z) + \frac{\lambda zh'(z)}{c + p} \right\} \in P_k(\rho), \text{ for } z \in E.
\]

Consequently \(\{ h(z) + \frac{\lambda zh'(z)}{c + p} \} \in P(\rho), i = 1, 2, 0 \leq \rho \leq p \) and \(z \in E. \) Using Lemma 2.1 with \(\lambda_1 = \frac{k}{(c + p)}, \) we have \(\Re\{h_i(z)\} > \delta, \) where \(\delta \) is given by (3.10), and the proof is complete. \(\square \)

Theorem 3.3. Let \(f \in T_{3,\beta,p,k}^\alpha(\lambda, \rho), \) and let \(\phi \in C(p), \) where \(C(p) \) is the class of \(p \)-valent convex functions. Then \(\phi \ast f \in T_{3,\beta,p,k}^\alpha(\lambda, \rho). \)
Proof. Let $F = \phi \ast f$. Then, we have
\[
\left\{ \frac{\lambda}{p} \left(\frac{Q^{\alpha-1}_{\beta,p} F(z)}{z^p} \right) + \frac{p - \lambda}{p} \left(\frac{Q^{\alpha}_{\beta,p} F(z)}{z^p} \right) \right\} = \frac{\phi(z)}{z^p} \ast G(z),
\]
where
\[
G(z) = \left\{ \frac{\lambda}{p} \left(\frac{Q^{\alpha-1}_{\beta,p} f(z)}{z^p} \right) + \frac{p - \lambda}{p} \left(\frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} \right) \right\} \in P_k(\rho).
\]
Therefore, we have $\frac{\phi(z)}{z^p} \ast G(z) = (\frac{k}{4} + \frac{1}{2})(p - \rho)(\frac{\phi(z)}{z^p} \ast g_1(z)) + \rho - (\frac{k}{4} - \frac{1}{2})(p - \rho)(\frac{\phi(z)}{z^p} \ast g_2(z)) + \rho$, $g_1, g_2 \in P$. Since $\phi \in C(p)$, $\text{Re} \{ \frac{\phi(z)}{z^p} \} > \frac{1}{2}$, $z \in E$, and so using Lemma 2.2, we conclude that $F = \phi \ast f \in T^\alpha_{\beta,p,k}(\lambda, \rho)$.

Theorem 3.4. For $0 \leq \lambda_2 < \lambda_1$, $T^\alpha_{\beta,p,k}(\lambda_1, \rho) \subset T^\alpha_{\beta,p,k}(\lambda_2, \rho)$.

Proof. For $\lambda_2 = 0$, the proof is immediate. Let $\lambda_2 > 0$ and $f \in T^\alpha_{\beta,p,k}(\lambda_1, \rho)$. Then
\[
\left\{ \frac{\lambda_2}{p} \left(\frac{Q^{\alpha-1}_{\beta,p} f(z)}{z^p} \right) + \frac{p - \lambda_2}{p} \left(\frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} \right) \right\} = \frac{\lambda_1}{p} \left(\frac{Q^{\alpha-1}_{\beta,p} f(z)}{z^p} \right) + \frac{p - \lambda_1}{p} \left(\frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} \right)
\]
\[
+ \left(1 - \frac{\lambda_2}{\lambda_1} \right) \left(\frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} \right) = (1 - \frac{\lambda_2}{\lambda_1})H_1(z) + \frac{\lambda_2}{\lambda_1}H_2(z), \quad H_1, H_2 \in P_k(\rho).
\]
Since $P_k(\rho)$ is a convex set, see [6], we conclude that $f \in T^\alpha_{\beta,p,k}(\lambda_2, \rho)$, for $z \in E$.

Theorem 3.5. Let $f \in T^\alpha_{\beta,p,k}(0, \rho)$. Then $f \in T^\alpha_{\beta,p,k}(\lambda, \rho)$, for $|z| < r_\lambda = \frac{1}{2\lambda + \sqrt{4\lambda^2 - 2\lambda + 1}}, \quad \lambda \neq \frac{1}{2}, \quad 0 < \lambda < 1$.

Proof. Let $\Psi_\lambda(z) = (1 - \lambda)\frac{z^p}{(1 - z)^p} + \lambda\frac{z^p}{1 - z} = z^p + \sum_{n=2}^{\infty} (1 + (n - 1)\lambda)z^{n+p-1}$. $\Psi_\lambda \in C(p)$ for $|z| < r_\lambda = \frac{1}{2\lambda + \sqrt{4\lambda^2 - 2\lambda + 1}}, \quad \lambda \neq \frac{1}{2}, \quad 0 < \lambda < 1$.

We can write
\[
\left\{ \frac{\lambda}{p} \left(\frac{Q^{\alpha-1}_{\beta,p} f(z)}{z^p} \right) + \frac{p - \lambda}{p} \left(\frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} \right) \right\} = \Psi_\lambda(z) \frac{Q^{\alpha}_{\beta,p} f(z)}{z^p}.
\]
Applying Theorem 3.3, we see that $f \in T^\alpha_{\beta,p,k}(\lambda, \rho)$ for $|z| < r_\lambda$.

Now we study the interesting properties of the class $B^\alpha_{\beta,p,k}(\lambda, \rho)$.
Theorem 3.6. Let \(\lambda \in \mathbb{C} \) with \(\Re \lambda > 0 \). Then \(\mathcal{B}^{\alpha}_{\beta,p,k}(\lambda, \rho) \subset \mathcal{B}^{\alpha}_{\beta,p,k}(0, \rho_4) \), where \(\rho_4 \) is given by

\[
\rho_4 = \rho + (1 - \rho)(2\gamma_2 - 1),
\]

and \(\gamma_2 = \int_0^1 (1 + t^\Re(\lambda/2))^{-1} dt \).

Proof. Let \(f \in \mathcal{B}^{\alpha}_{\beta,p,k}(\lambda, \rho) \) and set

\[
(3.14) \quad \lambda, p \left(\begin{array}{c}
Q_{z_p}^{p} f(z) \\
-p(z) = \left(\frac{k}{4} + \frac{1}{2} \right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_2(z).
\end{array} \right.
\]

Then \(p(z) \) is analytic in \(E \) with \(p(0) = 1 \). By a simple computation, we have

\[
\left\{ (1 - \lambda) \frac{Q_{z_p}^{p} f(z)}{z_p} + \frac{\lambda}{p} \frac{(Q_{z_p}^{p} f(z))'}{z_p} \right\} = \{ p(z) + \frac{1}{p} \lambda |z| \}
\]

So \(\{ p(z) + \frac{1}{p} \lambda |z| \} \in \mathcal{P}_k(\rho) \) for \(z \in E \). This implies that \(\{ p_i(z) + \frac{1}{p} \lambda |z| \} > \rho \), \(i = 1, 2 \). Using Lemma 2.1, we see that \(\Re \{ p_i(z) \} > \rho_4 \), where \(\rho_4 \) is given by (3.13). Consequently \(p \in \mathcal{P}_k(\rho_4) \) for \(z \in E \), and the proof is complete.

Now we take the converse case of Theorem 3.6.

Theorem 3.7. Let \(f \in \mathcal{B}^{\alpha}_{\beta,p,k}(0, \rho) \) for \(z \in E \). Then \(f \in \mathcal{B}^{\alpha}_{\beta,p,k}(\lambda, \rho) \) for \(|z| < R(\lambda,p) \), where

\[
(3.15) \quad \Re \{ \lambda, \rho \} = \frac{p}{|\lambda| + \sqrt{|\lambda|^2 + p}}.
\]

Proof. Set \(\frac{Q_{z_p}^{p} f(z)}{z_p} = (p - \rho)h(z) + \rho, \) \(h \in \mathcal{P}_k \). Now proceeding as in Theorem 3.6., we have

\[
\left\{ (1 - \lambda) \frac{Q_{z_p}^{p} f(z)}{z_p} + \frac{\lambda}{p} \frac{(Q_{z_p}^{p} f(z))'}{z_p} \right\} = (p - \rho) \left\{ h(z) + \frac{\lambda h'_{z_p}(z)}{p} \right\}
\]

(3.16) \(= (p - \rho) \left(\frac{k}{4} + \frac{1}{2} \right) \left\{ h_1(z) + \frac{\lambda h'_{z_p}(z)}{p} \right\} - \left(\frac{k}{4} - \frac{1}{2} \right) \left\{ h_2(z) + \frac{\lambda h'_{z_p}(z)}{p} \right\} \right),
\]

where we have used (1.3) and \(h_1, h_2 \in P, z \in E \). Using the following well known estimates, see [5], \(|z h'(z)| \leq \frac{2r}{1-r^2} \Re \{ h_i(z) \}, \) \((|z| = r < 1), i = 1, 2, \)

we have \(\Re \{ h_i(z) + \frac{1}{p} \lambda |z| \} \geq \Re \{ h_i(z) - \frac{1}{p} |z| \} \), \(\Re \{ h_i(z) \} \geq \Re \{ h_i(z) \} \{ 1 - \frac{2|\lambda|}{p} \} \). The right hand side of this inequality is positive if \(r < R(\lambda,p) \),
where $R(\lambda, p)$ is given by (3.15). Consequently it follows from (3.16) that $f \in B^{\alpha}_{\beta,p,k}(\lambda, \rho)$ for $|z| < R(\lambda, p)$.

Sharpness of this result follows by taking $h_i(z) = \frac{1}{z^2}$ in (3.16), $i = 1, 2$. \hfill \qedsymbol

Theorem 3.8. For $0 \leq \lambda_2 < \lambda_1$, $B^{\alpha}_{\beta,p,k}(\lambda_1, \rho) \subset B^{\alpha}_{\beta,p,k}(\lambda_2, \rho)$.

Proof. For $\lambda_2 = 0$, the proof is immediate. Let $\lambda_2 > 0$ and let $f \in B^{\alpha}_{\beta,p,k}(\lambda_1, \rho)$. Then there exist two functions $H_1, H_2 \in P_k(\rho)$ such that from Definition 1.1 and Theorem 3.6, we have

$$\left\{ (1 - \lambda_1) \frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} + \frac{\lambda_1}{p} \frac{(Q^{\alpha}_{\beta,p} f(z))'}{z^{p-1}} \right\} = H_1(z),$$

and $\frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} = H_2(z)$. Hence

$$\left\{ (1 - \lambda_2) \frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} + \frac{\lambda_2}{p} \frac{(Q^{\alpha}_{\beta,p} f(z))'}{z^{p-1}} \right\} = \frac{\lambda_2}{\lambda_1} H_1(z) + (1 - \frac{\lambda_2}{\lambda_1}) H_2(z).$$

Since the class $P_k(\rho)$ is a convex set, see [6], it follows that the right hand side of (3.17) belong to $P_k(\rho)$ and this proves the result. \hfill \qedsymbol

Theorem 3.9. Let $f \in B^{\alpha}_{\beta,p,k}(\lambda, \rho)$, and let $\phi \in C(p)$, where $C(p)$ is the class of p-valent convex functions. Then $\phi * f \in B^{\alpha}_{\beta,p,k}(\lambda, \rho)$.

Proof. Let $F = \phi * F$. Then, we have

$$\left\{ (1 - \lambda) \frac{Q^{\alpha}_{\beta,p} F(z)}{z^p} + \frac{\lambda}{p} \frac{(Q^{\alpha}_{\beta,p} F(z))'}{z^{p-1}} \right\} = \phi(z) \frac{G(z)}{z^p} * G(z),$$

where

$$G(z) = \left\{ (1 - \lambda) \frac{Q^{\alpha}_{\beta,p} f(z)}{z^p} + \frac{\lambda}{p} \frac{(Q^{\alpha}_{\beta,p} f(z))'}{z^{p-1}} \right\} \in P_k(\rho).$$

Therefore, we have

$$\frac{\phi(z)}{z^p} * G(z) = \left(\frac{k}{4} + \frac{1}{2} \right) \left\{ (p - \rho) \left(\frac{\phi(z)}{z^p} * g_1(z) \right) + \rho \right\}$$

$$- \left(\frac{k}{4} - \frac{1}{2} \right) \left\{ (p - \rho) \left(\frac{\phi(z)}{z^p} * g_2(z) \right) + \rho \right\}, \ g_1, g_2 \in P.$$
Since $\phi \in C(p)$, $\Re \left\{ \frac{d(\phi)}{d_p} \right\} > \frac{1}{2}$, $z \in E$, and so using Lemma 2.2, we conclude that $F = \phi \ast F \in B_{\beta,p,k}^\alpha(\lambda, \rho)$. \hfill \Box

REFERENCES

Received: 19.V.2012
Accepted: 11.VII.2012

ALI MUHAMMAD

Department of Basic Sciences,
University of Engineering and Technology,
Peshawar,
PAKISTAN
ali7887@gmail.com