1. Alber, Ya.I.; Guerre-Delabriere, S. - Principle of weakly contractive maps in Hilbert spaces, New results in operator theory and its applications, 7-22, Oper. Theory Adv. Appl., 98, Birkhäuser, Basel, 1997.Google Scholar

2. Al-Homidan, S.; Ansari, Q.H.; Yao, J.-C. - Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal., 69 (2008), 126-139.Google Scholar

3. Bae, J.S. - Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl., 284 (2003), 690-697.Google Scholar

4. Beg, I.; Abbas, M. - Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl., 2006, Art. ID 74503, 7 pp.Google Scholar

5. Berthiaume, G. - On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc., 66 (1977), 335-343.Google Scholar

6. Boyd, D.W.; Wong, J.S.W. - On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458-464.Google Scholar

7. Künzi, H.-P.A. - Nonsymmetric topology, Topology with applications (Szeksz´ard, 1993), 303-338, Bolyai Soc. Math. Stud., 4, J´anos Bolyai Math. Soc., Budapest, 1995.Google Scholar

8. Künzi, H.-P.; Ryser, C. - The Bourbaki quasi-uniformity, Topology Proc., 20 (1995), 161-183.Google Scholar

9. Reich, S. - Some fixed point problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57 (1974), 194-198 (1975).Google Scholar

10. Reilly, I.L.; Subrahmanyam, P.V.; Vamanamurthy, M.K. - Cauchy sequences in quasipseudometric spaces, Monatsh. Math., 93 (1982), 127-140.Google Scholar

11. Rhoades, B.E. - Some theorems on weakly contractive maps, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000). Nonlinear Anal., 47 (2001), 2683-2693.Google Scholar

12. Romaguera, S. - Left K-completeness in quasi-metric spaces, Math. Nachr., 157 (1992), 15-23.Google Scholar

13. Schellekens, M. - Complexity spaces revisited (extended abstract), Proceedings of the Eighth Prague Topological Symposium (1996), 337-348 (electronic), Topol. Atlas, North Bay, ON, 1997. Google Scholar

## Comments (0)