Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

4 Issues per year

IMPACT FACTOR 2016: 1.395

CiteScore 2016: 1.25

SCImago Journal Rank (SJR) 2016: 0.404
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Open Access
See all formats and pricing
More options …
Volume 61, Issue 1 (Mar 2010)


Dose Rate Effect of Pulsed Electron Beam on Micronucleus Frequency in Human Peripheral Blood Lymphocytes

Santhosh Acharya
  • Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalagangotri, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ganesh Sanjeev
  • Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalagangotri, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nagesh Bhat / Yerol Narayana
  • Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalagangotri, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-03-25 | DOI: https://doi.org/10.2478/10004-1254-61-2010-1982

Dose Rate Effect of Pulsed Electron Beam on Micronucleus Frequency in Human Peripheral Blood Lymphocytes

The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7±0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.

Utjecaj Brzine Doze Pulsnoga Zračenja na Nastanak Mikronukleusa u Limfocitima Periferne Ljudske Krvi

Mikronukleus-test pokazao se osjetljivim pokazateljem oštećenja u limfocitima periferne ljudske krvi te se primjenjuje kao biološki dozimetar posumnja li se na prekomjerno izlaganje ionizirajućem zračenju. Mikronukleusi kao mjera oštećenja kromosoma često se rabe za procjenu učinaka zračenja u biološkim sustavima. Ovdje je istraženo djelovanje pulsnoga elektronskoga snopa od 8 MeV, dobivenog s pomoću elektronskoga akceleratora marke Microtron, na nastanak mikronukleusa u rasponu brzina doza od 35 Gy min-1 do 352.5 Gy min-1. Brzine doza mijenjale su se mijenjajući brzinu ponavljanja pulsa (tzv. pulse repetition rate, krat. PRR). Za mjerenje apsorbirane doze pri različitim PRR-ovima rabio se Frickeov dozimetar. Dozimetrijska su mjerenja također poslužila za ujednačavanje doze elektronskoga snopa. Za istraživanje utjecaja brzine doze, uzorci krvi ozračeni tako da apsorbiraju dozu od (4.7±0.2) Gy pri različitim brzinama doze, a zatim se s pomoću mikronukleus-testa utvrdilo citogenetsko oštećenje. Pokus s pulsnim snopovima energije 8 MeV upućuje na neovisnost broja mikronukleusa o brzinama doze u rasponu ispitanome u ovom istraživanju. Naše ranije istraživanje utjecaja doze pulsnoga elektronskoga zračenja energije 8 MeV upozorilo je na linearni do kvadratni odgovor izmjerenih parametara. Stoga se akcidentalna doza može procijeniti s pomoću linearnih do kvadratnih parametara odgovora na dozu, bez potrebe za korekcijom s pomoću brzine doze.

Keywords: dosimetry; microtron; 8 MeV electrons; pulse repetition rate

Keywords: akcelerator; dozimetrija; elektronski snop; PRR

  • Fenech M. The in vitro micronucleus technique. Mutat Res 2000;455:81-95.Google Scholar

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E. Human project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 2003;534:65-75.Google Scholar

  • International Atomic Energy Agency (IAEA). Biological dosimetry: Chromosomal aberration analysis for dose assessment. Technical Reports Series no. 260. Vienna: IAEA; 1986.Google Scholar

  • Mill AJ, Wells J, Hall SC, Butler A. Micronucleus induction in human lymphocytes: comparative effects of X rays, alpha particles, beta particles and neutrons and implications for biological dosimeter. Radiat Res 1996;145:575-85.Google Scholar

  • Bhat NN, Rao BS. Dose rate effect on micronucleus induction in cytokinesis blocked human peripheral blood lymphocytes. Radiat Prot Dosim 2003;106:45-52.Google Scholar

  • Solomon FDP, Venkatachalam P, Jeevanram RK. Analysis of radiation dose response curve obtained with cytokinesis block micronucleus assay. Nucl Med Biol 1997;24:413-6.Google Scholar

  • Prosser JS, Moquet JE, Lloyd DC, Edwards AA. Radiation induction of micronuclei in human lymphocytes. Mutat Res 1988;199:37-45.Google Scholar

  • The dose response relationship obtained at constant irradiation times for the induction of chromosome aberrations in human lymphocytes by Cobalt-60 Gamma rays. Radiat Environ Biophys 1984;23:179-189.PubMedGoogle Scholar

  • Hall EJ, Brenner DJ. The dose-rate effect revisited: radiobiological considerations of importance in radiotherapy. Int J Radiat Oncol Biol Phys 1991;21:1403-14.CrossrefPubMedGoogle Scholar

  • Purrott RJ, Reeder EJ, Lovell S. Chromosome aberration yields induced in human lymphocytes by 15 MeV electrons given at a conventional dose-rate and in microsecond pulses. Int J Radiat Biol 1977;31:251-6.CrossrefGoogle Scholar

  • Tillman C, Grafstrom G, Jonsson AC, Jonsson BA, Mercer I, Mattsson S, Strand SE, Svanberg S. Survival of mammalian cells exposed to ultrahigh dose rates from a laser-produced plasma X-ray source. Radiology 1999;213:860-5.Google Scholar

  • Shinohara K, Nakano H, Miyazaki N, Tago M, Kodama R. Effects of single pulse (≤1ps) X-rays from laser-produced plasmas on mammalian cells. J Radiat Res 2004;45:509-14.CrossrefPubMedGoogle Scholar

  • Berry RJ, Hall EJ, Forster DW, Storr TH, Goodman MJ. Survival of mammalian cells exposed to X-rays at ultra high dose rates. Br J Radiol 1969;42:102-7.PubMedCrossrefGoogle Scholar

  • Prempree T, Michelsen A, Merz T. The repair time of chromosome breaks induced by pulsed X-rays of ultra high dose rate. Int J Radiat Biol 1969;15:571-4.CrossrefGoogle Scholar

  • Hornsey S. Differences in survival of jejunal crypt cells after radiation delivered at different dose rates. Br J Radiol 1970;43:802-6.CrossrefPubMedGoogle Scholar

  • Acharya S, Ganesh S, Bhat NN, Siddappa K, Narayana Y. The effect of electron and gamma irradiation on the induction of micronuclei in Cytokinesis-blocked human blood lymphocytes. Radiat Environ Biophys 2009;48:197-203.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Sinclair WK. The linear no-threshold response: why not linearity? Med Phys 1998;25:285-90.PubMedCrossrefGoogle Scholar

  • Gupta BL, Narayan GR, Nilekani SR, Bhat RM, Kaul A, Bemalkhedkar MM, Soni HC, Ganesh S, Nagesh YN, Prashant KC, Umakanth D, Gnana Prakash AP, Siddappa K. Preliminary dosimetry studies for microtron using chemical dosimeter. J Radiat Prot Environ 1999;22:169-74.Google Scholar

  • Siddappa K, Ganesh S, Balakrishna KM, Ramamurthi SS, Soni HC, Shrivastava P, Sheth Y, Hemnani R. Variable energy microtron for R & D work. Radiat Phys Chem 1998;51:441-2.CrossrefGoogle Scholar

  • Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res 1985;147:29-36.Google Scholar

  • Heddle JA. A rapid in vivo test for chromosomal damage. Mutat Res 1973;18:187-90.CrossrefPubMedGoogle Scholar

  • Papworth DG. Appendix to paper by Savage JRK. Sites of radiation induced chromosome exchanges. Curr Top Radiat Res 1970;6:129-94.Google Scholar

  • Edwards AA, Lloyd DC, Purrott RJ. Radiation induced chromosomal aberrations and the Poisson distribution. Radiat Environ Biophys 1979;116:89-100.CrossrefGoogle Scholar

  • International Commission on Radiation Units and Measurements (ICRU). The dosimetry of pulsed radiation (Report 34). Washington (DC): ICRU; 1983.Google Scholar

  • Bhat NN, Rao BS. Dose rate effect on micronuclei induction in cytokinesis blocked human peripheral blood lymphocytes. Radiat Prot Dosim 2003;106:45-52.Google Scholar

  • Kormos C, Köteles GJ. Micronuclei in X-irradiated human lymphocytes. Mutat Res 1988;199:31-5.Google Scholar

  • Deveaux LC, Wells DP, Hunt A, Webb T, Beezhold W, Harmon JF. Accelerator-based radiation sources for next-generation radiobiological research. Nucl Instrum Method Phys Res Sec A 2006;562:981-4.Google Scholar

  • Epp ER, Weiss H, Santomasso A. The oxygen effect in bacteria cells irradiated with high intensity pulsed electrons. Radiat Res 1968;34:320-5.CrossrefPubMedGoogle Scholar

  • Hall EJ. Radiation dose rate: a factor of importance in radiobiology and radiotherapy. Br J Radiol 1972;45:81-97.Google Scholar

  • Hornsey S, Alper T. Unexpected dose rate effect in the killing of mice by radiation. Nature 1966;210:212-3.Google Scholar

  • Bellucci M. Modifications in the biological effect of X-radiation with respect to the rhythmic fractionation of the radiation beam. Radioterap Radiobiol E Fiz Med 1960;14:188-204.Google Scholar

  • Hood SL, Norris G. Human cell survival after pulsed X-irradiation. Radiat Res 1965;24:81-7.CrossrefGoogle Scholar

  • Town CD. Effects of high dose rates on survival of mammalian cells. Nature 1967;215:847-8.Google Scholar

  • Bewes JM, Suchowerska N, Jackson M, Zhang M, McKenzie DR. The radiobiological effect of intra-fraction dose-rate modulation in intensity modulated radiation therapy (IMRT). Phys Med Biol 2008;53:3567-78.PubMedCrossrefGoogle Scholar

About the article

Published Online: 2010-03-25

Published in Print: 2010-03-01

Citation Information: Archives of Industrial Hygiene and Toxicology, ISSN (Print) 0004-1254, DOI: https://doi.org/10.2478/10004-1254-61-2010-1982.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Praveen Joseph, Santhosh Acharya, Ganesh Sanjeev, N. N. Bhat, and Y. Narayana
Journal of Radioanalytical and Nuclear Chemistry, 2011, Volume 290, Number 1, Page 209
Karl Brehwens, Ainars Bajinskis, Siamak Haghdoost, and Andrzej Wojcik
International Journal of Radiation Biology, 2014, Volume 90, Number 3, Page 241

Comments (0)

Please log in or register to comment.
Log in