Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

4 Issues per year


IMPACT FACTOR 2016: 1.395

CiteScore 2016: 1.25

SCImago Journal Rank (SJR) 2016: 0.404
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Open Access
Online
ISSN
0004-1254
See all formats and pricing
More options …
Volume 62, Issue 1 (Mar 2011)

Issues

Cadmium Toxicity Revisited: Focus on Oxidative Stress Induction and Interactions with Zinc and Magnesium

Vesna Matović
  • Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandra Buha
  • Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zorica Bulat
  • Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Danijela Đukić-Ćosić
  • Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-03-21 | DOI: https://doi.org/10.2478/10004-1254-62-2011-2075

Cadmium Toxicity Revisited: Focus on Oxidative Stress Induction and Interactions with Zinc and Magnesium

Discovered in late 1817, cadmium is currently one of the most important occupational and environmental pollutants. It is associated with renal, neurological, skeletal and other toxic effects, including reproductive toxicity, genotoxicity, and carcinogenicity. There is still much to find out about its mechanisms of action, biomarkers of critical effects, and ways to reduce health risks. At present, there is no clinically efficient agent to treat cadmium poisoning due to predominantly intracellular location of cadmium ions. This article gives a brief review of cadmium-induced oxidative stress and its interactions with essential elements zinc and magnesium as relevant mechanisms of cadmium toxicity. It draws on available literature data and our own results, which indicate that dietary supplementation of either essential element has beneficial effect under condition of cadmium exposure. We have also tackled the reasons why magnesium addition prevails over zinc and discussed the protective role of magnesium during cadmium exposure. These findings could help to solve the problem of prophylaxis and therapy of increased cadmium body burden.

Još o toksičnosti kadmija - s posebnim osvrtom na nastanak oksidacijskoga stresa i na interakcije s cinkom i magnezijem

Iako je otkriven tek 1817. godine, kadmij je trenutačno jedan od najvažnijih onečišćivača životne i radne sredine. Štetno djeluje na bubrege, živčani sustav, kosti, reproduktivni sistem, a ima i genotoksične i karcinogene efekte. Nužna su dalja istraživanja vezana za mehanizme njegove toksičnosti, biomarkere efekata, kao i načine smanjenja rizika za zdravlje. Osim toga, do danas nije otkriven agens efikasan u terapiji trovanja kadmijem s obzirom na to da je kadmij intracelularni kation. U ovom radu dan je sažet pregled važnih mehanizama toksičnosti kadmija, kao što su nastanak oksidativnog stresa i interakcije s esencijalnim elementima, cinkom i magnezijem, na osnovi dostupnih literaturnih podataka, kao i naših ispitivanja koja upućuju na to da povećani unos navedenih esencijalnih elemenata pokazuje pozitivne efekte pri ekspoziciji kadmiju. Obrazložena je prednost suplementacije magnezijem pred suplementacijom cinkom i razmatrana preventivna uloga magnezija pri intoksikaciji kadmijem. Ovi su rezultati doprinos rješavanju problema profilakse i terapije trovanja kadmijem.

Keywords: carcinogenicity; chelation therapy; dietary supplementation; essential elements

Keywords: esencijalni elementi; karcinogenost; kelatna terapija; suplementacija

  • Nordberg NF. Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 2009;238:192-200.PubMedCrossrefGoogle Scholar

  • Friberg L. Proteinuria and kidney injury among workmen exposed to cadmium and nickel dust. J Ind Hyg Toxicol 1948;30:32-6.PubMedGoogle Scholar

  • Tcuchiya K. Causation of ouch-ouch disease (Itai-Itai Byõ) an introductory review. II. Epidemiology and evaluation. Keio J Med 1969;18:181-94.Google Scholar

  • Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc 1957;79:4813-4.CrossrefGoogle Scholar

  • Kagi JH, Vallee BL. Metallothionein: a cadmium- and zinccontaining protein from equine renal cortex. J Biol Chem 1960;235:3460-5.Google Scholar

  • Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 2010;23(5 Special Issue):897-926.CrossrefGoogle Scholar

  • Memiši N, Žujović M, Bogdanović V, Tomić Z, Petrović MP. The influence of presence of cadmium and arsenic in feedmeal on production and reproduction traits of goats. Biotechnol Anim Husbandry 2008;24:39-47.CrossrefGoogle Scholar

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morell FMM. Biochemistry: A cadmium enzyme from a marine diatom. Nature 2005;435:42.Google Scholar

  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004;4:11-8.CrossrefGoogle Scholar

  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Stölzle S, Fertig N, Parak WJ. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005;5:331-8.PubMedCrossrefGoogle Scholar

  • Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 2005;1: 121-3.CrossrefGoogle Scholar

  • Smith AM, Duan h, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Delivery Rev 2008;60:1226-40.CrossrefGoogle Scholar

  • New insights into the mechanisms of cadmium toxicity - Advances in cadmium research, Special issue. Toxicol Appl Pharmacol 2009;238 (3): 191-326.Google Scholar

  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for cadmium. Atlanta (USA): ATSDR; 2008.Google Scholar

  • Lewis GP, Coughlin LL, Jusko WJ, Hartz S. Contribution of cigarette smoking to cadmium accumulation in man. Lancet 1972;299:291-2.Google Scholar

  • Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters h, Vangronsveld J. Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 2010;23:769-82.PubMedCrossrefGoogle Scholar

  • Agency for Toxic Substances and Disease Registry (ATSDR). CERCLA Priority list of hazardous substances that will be the subject of toxicological profiles and support document. Atlanta (USA): ATSDR, U. S. Department of Health and Human Services; 2007.Google Scholar

  • Bhattacharyya MH. Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures. Toxicol Appl Pharmacol 2009;238:258-65.Google Scholar

  • Everett CJ, Frithsen IL. Association of urinary cadmium and myocardial infarction. Environ Res 2008;106:284-6.PubMedCrossrefGoogle Scholar

  • Edwards JR, Prozialeck WC. Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 2009;238:289-93.Google Scholar

  • Darbre PD. Metalloestrogens: An emerging class of inorganic xenoestrogens with potential to add to the estrogenic burden of the human breast. J Appl Toxicol 2006;26:191-7.CrossrefGoogle Scholar

  • McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA. Cadmium exposure and breast cancer risk. J Natl Cancer Inst 2006;98:869-73.CrossrefPubMedGoogle Scholar

  • Il'yasova D, Schwartz GG. Cadmium and renal cancer. Toxicol Appl Pharmacol 2005;207:179-86.Google Scholar

  • International Agency for Research on Cancer (IARC). Cadmium and cadmium compounds, In: IARC Monographs on the evaluation of carcinogenic risks to humans. Vol. 58. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Lyon: IARC; 1993. p. 119-237.Google Scholar

  • NTP Report on Carcinogens Background Document for Cadmium, March 1999. NIEHS Contract No. NO1-ES-25346 [displayed 9 January 2011]. Available at http://ntp.niehs.nih.gov/files/Cadmium.pdf

  • Nawrot TS, Van Hecke E, Thijs L, Richart T, Kuznetsova T, Jin Y, Vangronsveld J, Roels HA, Staessen JA. Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect 2008;116:1620-8.CrossrefPubMedGoogle Scholar

  • Jin YH, Clark AB, Slebos RJ, Al-Refai h, Taylor JA, Kunkel TA, Resnick MA, Gordenin DA. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet 2003;34: 326-9.PubMedCrossrefGoogle Scholar

  • Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C. Cadmium levels in Europe: implications for human health. Environ Geochem Health 2010;32:1-12.CrossrefPubMedGoogle Scholar

  • Joseph P. Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 2009;238:272-9.Google Scholar

  • Moulis J-M. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 2010;23:877-96.PubMedCrossrefGoogle Scholar

  • Matović V, Plamenac-Bulat Z, Djukić-Ćosić D, Soldatović D. Antagonism between cadmium and magnesium: a possible role of magnesium in therapy of cadmium intoxication. Magnesium Res 2010;23:19-26.Google Scholar

  • Lazarus M. Međudjelovanje kadmija i selenija u sisavaca. Arh Hig Rada Toksikol 2010;61:357-69.Google Scholar

  • Müller L. Consequences of cadmium toxicity in rat hepatocytes: Mitochondrial dysfunction and lipid peroxidation. Toxicology 1986;40:285-95.CrossrefPubMedGoogle Scholar

  • Hart BA, Lee CH, Shukla GS, Shukla A, Osier A, Eneman JD, Chiu JF. Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology 1999;133:43-58PubMedCrossrefGoogle Scholar

  • Liu F, Jan KY. DNA damage in arsenite-and cadmium-treated bovine aortic endothelial cells. Free Radic Biol Med 2000;28:55-63.Google Scholar

  • Manca D, Richard AC, Tra HV, Chevalier G. Relation between lipid peroxidation and inflammation in the pulmonary toxicity of cadmium. Arch Toxicol 1994;68: 364-9.PubMedCrossrefGoogle Scholar

  • Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, Ravanat J-L, Favier A, Sakly M, Ben Rhouma K. Preventive effect of zinc against cadmium-induced oxidative stress in the rat testis. J Reprod Dev 2008;54:129-34.PubMedCrossrefGoogle Scholar

  • Djukić-Ćosić D, Ćurčić-Jovanović M, Plamenac-Bulat Z, Ninković M, Maličević Z, Matović V. Relation between lipid peroxidation and iron concentration in mouse liver after acute and subacute cadmium intoxication. J Trace Elem Med Biol 2008;22:66-72.CrossrefGoogle Scholar

  • Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12:1161-208.CrossrefPubMedGoogle Scholar

  • Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 2009;238:209-14.PubMedCrossrefGoogle Scholar

  • Djukić-Ćosić D, Ninković M, Maličević Ž, Matović V, Soldatović D. Effect of magnesium pretreatment on reduced gluthatione levels in tissues of mice exposed to acute and subacute cadmium intoxication: a time course study. Magnes Res 2007;20:177-86.Google Scholar

  • Casalino E, Sblano C, Landriscina C. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 1997;346:171-9.Google Scholar

  • Yamano T, DeCicco LA, Rikans LE. Attenuation of cadmium-induced liver injury in senescent male fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol 2000;162:68-75.Google Scholar

  • Belyaeva EA, Dymkowska D, Wieckowski MR, Wojtczak L. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol Appl Pharmacol 2008;231:34-42.Google Scholar

  • Shaikh ZA, Vu TT, Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol 1999;154:256-63.Google Scholar

  • Ramirez DC, Gimenez MS. Induction of redox changes, inducible nitric oxide synthase and cyclooxygenase-2 by chronic cadmium exposure in mouse peritoneal macrophages. Toxicol Lett 2003;145:121-32.PubMedCrossrefGoogle Scholar

  • Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 2003;192:95-117.CrossrefPubMedGoogle Scholar

  • Thijssen S, Cuypers A, Maringwa J, Smeets K, Horemans N, Lambrichts I, Van Kerkhove E. Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology 2007;236:29-41.PubMedCrossrefGoogle Scholar

  • Qu W, Diwan BA, Reece JM, Bortner CD, Pi J, Liu J, Waalkes MP. Cadmium-induced malignant transformation in rat liver cells: Role of aberrant oncogene expression and minimal role of oxidative stress. Int J Cancer 2005;114:346-55.CrossrefPubMedGoogle Scholar

  • Wuehler SE, Peerson JM, Brown KH. Use of national food balance data to estimate the adequacy of zinc in national food supplies: Methodology and regional estimates. Public Health Nutr 2005;8:812-9.PubMedGoogle Scholar

  • Task Group on Metal Interactions. Factors influencing metabolism and toxicity of metals: a consensus report. Environ Health Perspect 1978;25:3-41.Google Scholar

  • Plamenac Z, Matović V, Vujanović D, Soldatović D. Zinc content in rabbits submitted to prolonged cadmium intoxication. In: Kovatsis AV, Tsoukali-Papadopoulou h, editors. Aspects on Forensis Toxicology. Greece: Thessaloniki-Tecnika Studio; 1995. p. 31-5.Google Scholar

  • Brzóska MM, Moniuszko-Jakoniuk J. Interactions between cadmium and zinc in the organism. Food Chem Toxicol 2001;39:967-80.PubMedCrossrefGoogle Scholar

  • Ishitobi h, Watanabe C. Effects of low-dose perinatal cadmium exposure on tissue zinc and copper concentrations in neonatal mice and on the reproductive development of female offspring. Toxicol Lett 2005;159:38-46.Google Scholar

  • Martelli A, Rousselet E, Dycke C, Bouron A, Moulis JM. Cadmium toxicity in animal cells by interference with essential metals. Biochimie 2006;88:1807-14.CrossrefPubMedGoogle Scholar

  • Osman K, Akesson A, Berglund M, Bremme K, Schütz A, Ask K, Vahter M. Toxic and essential elements in placentas of Swedish women. Clin Biochem 2000;33:131-8.PubMedCrossrefGoogle Scholar

  • Sorell TL, Graziano JH. Effect of oral cadmium exposure during pregnancy on maternal and fetal zinc metabolism in the rat. Toxicol Appl Pharmacol 1990;102:537-45.CrossrefPubMedGoogle Scholar

  • Plamenac Bulat Z. Interakcije kadmijuma i bioelemenata cinka, bakra i magnezijuma kod ljudi i kunića izloženih kadmijumu [Interactions of cadmium and bioelements zinc, copper and magnesium in humans and rabbits exposed to cadmium, in Serbian]. [PhD thesis]. Belgrade: Faculty of Pharmacy, University of Belgrade; 2009.Google Scholar

  • Soldatović D, Matović V, Vujanović D, Stojanović Z. Contribution to interaction between magnesium and toxic metals: the effect of prolonged cadmium intoxication on magnesium metabolism in rabbits. Magnes Res 1998;11: 283-8.PubMedGoogle Scholar

  • Smetana RH, Glogar DH, Gemeiner M. Role of cadmium and magnesium in pathogenesis of idiopathic dilated cardiomyopathy. Am J Cardiol 1986;58:364-6.PubMedCrossrefGoogle Scholar

  • Ezaki T, Tsukahara T, Moriguchi J, Furuki K, Fukui Y, Ukai H, Okamoto S, Sakurai H, Honda S, Ikeda M. Analysis for threshold levels of cadmium in urine that induce tubular dysfunction among women in non-polluted areas in Japan. Int Arch Occup Environ Health 2003;76:197-204.PubMedGoogle Scholar

  • Plamenac Bulat Z, Đukić-Ćosić D, Đokić M, Bulat P, Matović V. Blood and urine cadmium and bioelements profile in nickel-cadmium battery workers in Serbia. Toxicol Ind Health 2009;25:129-35.CrossrefGoogle Scholar

  • World Health Organization (WHO). Cadmium. Environmental Health Criteria No. 134. Geneva: WHO; 1992.Google Scholar

  • Pařizek J. The destructive effect of cadmium ion on testicular tissue and its prevention by zinc. J Endocrinol 1957;15: 56-63.CrossrefPubMedGoogle Scholar

  • Barbier O, Jacquillet G, Taue M, Poujeol P, Cougnon M. Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am J Physiol Renal Physiol 2004;287:F1067-75.Google Scholar

  • Jacquillet G, Barbier O, Cougnon M, Tauc M, Namorado MC, Martin D, Reyes JL, Poujeol P. Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Renal Physiol 2006;290:F127-37.Google Scholar

  • Brzóska MM, Rogalska J, Galazyn-Sidorczuk M, Jurczuk M, Roszczenko A, Kulikowska-Karpińska E, Moniuszko-Jakoniuk J. Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicology 2007;237:89-103.Google Scholar

  • Waalkes MP, Rehm S, Riggs CW, Bare RM, Devor DE, Poirier LA, Wenk ML, Henneman JR. Cadmium carcinogenesis in male wistar [Crl:(WI)BR] rats: Doseresponse analysis of effects of zinc on tumor induction in the prostate, in the testes, and at the injection site. Cancer Res 1989;49:4282-8.Google Scholar

  • Hu Y, Jin T, Zhou T, Pang B, Wang Y. Effects of zinc on gene expressions induced by cadmium in prostate and testes of rats. Biometals 2004;17:571-2.PubMedCrossrefGoogle Scholar

  • Bulat PZ, Djukić-Ćosić D, Maličević Ž, Bulat P, Matović V. Zinc or magnesium supplementation modulates Cd intoxication in blood, kidney, spleen, and bone of rabbits. Biol Trace Elem Res 2008;124:110-7.PubMedCrossrefGoogle Scholar

  • Bridges CC, Zalups RK. Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharm 2005;204:274-308.Google Scholar

  • Jihen EH, Fatima H, Nouha A, Baati T, Imed M, Abdelhamid K. Cadmium retention increase: A probable key mechanism of the protective effect of zinc on cadmium-induced toxicity in the kidney. Toxicol Lett 2010;196:104-9.Google Scholar

  • Boujelben M, Ghorbel F, Vincent C, Makni-Ayadi F, Guermazi F, Croute F, El-Feki A. Lipid peroxidation and HSP72/73 expression in rat following cadmium chloride administration: Interactions of magnesium supplementation. Exp Toxicol Pathol 2006;57:437-43.Google Scholar

  • Djukić-Ćosić D, Ninković M, Maličević Z, Plamenac-Bulat Z, Matović V. Effect of supplemental magnesium on the kidney levels of cadmium, zinc, and copper of mice exposed to toxic levels of cadmium. Biol Trace Elem Res 2006;114:281-92.CrossrefGoogle Scholar

  • Blanuša M, Varnai VM, Piasek M, Kostial K. Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Curr Med Chem 2005;12:2771-94.PubMedCrossrefGoogle Scholar

  • Brzóska MM, Galazyn-Sidorczuk M, Rogalska J, Roszczenko A, Jurczuk M, Majewska K, Moniuszko-Jakoniuk J. Beneficial effect of zinc supplementation on biomechanical properties of femoral distal end and femoral diaphysis of male rats chronically exposed to cadmium. Chem Biol Interact 2008;171:312-24.Google Scholar

  • Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 2009;177:142-52.PubMedCrossrefGoogle Scholar

  • Waalkes MP. Cadmium carcinogenesis. Mutat Res 2003;533:107-20.Google Scholar

  • Liu X, Jin T, Nodberg GF, Rännar S, Sjöström M, Zhou Y. A multivariate study of protective effects of Zn and Cu against nephrotoxicity induced by cadmium metallothionein in rats. Toxicol Appl Pharmacolacol 1992;114:239-45.CrossrefGoogle Scholar

  • Turgut S, Enli Y, Emmungil G, Turgut G, Demir S, Kaptanoglu B, Genc O. Influence of cadmium and copper on tissue element levels of pregnant rats. Cent Eur J Med 2007;2:447-57.CrossrefGoogle Scholar

  • Matović V, Plamenac-Bulat Z, Djukić-Ćosić D, Soldatović D. Zinc, copper or magnesium supplementation against cadmium toxicity: an experimental study. In: Blanc G, Moreu D, editors. Biometals: Molecular Structures, Binding Properties and Applications. 1st ed. New York (NY): Nova Science Publisher; 2010. p. 1-31.Google Scholar

  • Matović V, Soldatović D, Vujanović D. Magnesium against lead: new approach to prophylaxis and therapy of chronic lead intoxication. In: Kotsaki-Kovatsi VP, Vafiadu AJ, editors. Aspects on Environmental Toxicology. Thessaloniki: Tecnika Studio; 1995. p. 78-82.Google Scholar

  • Soldatović D, Matović V, Vujanović D. Prophylactic effect of high magnesium intake in rabbits exposed to prolonged lead intoxication. Magnes Res 1993;6:145-8.PubMedGoogle Scholar

  • Soldatović D, Vujanović D, Matović V, Stojanović Z. Compared effects of high oral Mg supplements and of EDTA chelating agent on chronic lead intoxication in rabbits. Magnes Res 1997;10:127-33.PubMedGoogle Scholar

  • Soldatović D, Matović V. Influence of magnesium on the urinary lead excretion in rabbits submitted to chronic lead intoxication. In: Chhaparwal B, Durlach J, editors. Magnesium Research New Vistas. Indora: India; 1999. p. 125-31.Google Scholar

  • Soldatović D, Matović V, Vujanović D, Guiet-Bara A, Bara M, Durlach J. Metal pollutants and bioelements: retrospective of interactions between magnesium and toxic metals. Magnes Res 2002;15:67-72.PubMedGoogle Scholar

About the article


Published Online: 2011-03-21

Published in Print: 2011-03-01


Citation Information: Archives of Industrial Hygiene and Toxicology, ISSN (Print) 0004-1254, DOI: https://doi.org/10.2478/10004-1254-62-2011-2075.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maria J. Poblaciones, Paul Damon, Zed Rengel, and Jorge Paz-Ferreiro
PLOS ONE, 2017, Volume 12, Number 9, Page e0185395
[3]
Jingmei Pan, Xinhe Huang, Yuxing Li, Ming Li, Ning Yao, Zhengdong Zhou, and Xueru Li
Chemosphere, 2017
[4]
Cristina de Angelis, Mariano Galdiero, Claudia Pivonello, Ciro Salzano, Daniele Gianfrilli, Prisco Piscitelli, Andrea Lenzi, Annamaria Colao, and Rosario Pivonello
Reproductive Toxicology, 2017
[5]
Carlos Jadán-Piedra, Gabriela Matuoka Chiocchetti, María Jesús Clemente, Dinoraz Vélez, and Vicenta Devesa
Critical Reviews in Food Science and Nutrition, 2017, Page 1
[6]
Bella B. Manshian, Thomas F. Martens, Karsten Kantner, Kevin Braeckmans, Stefaan C. De Smedt, Jo Demeester, Gareth J. S. Jenkins, Wolfgang J. Parak, Beatriz Pelaz, Shareen H. Doak, Uwe Himmelreich, and Stefaan J. Soenen
Journal of Nanobiotechnology, 2017, Volume 15, Number 1
[7]
International Journal of Molecular Sciences, 2017, Volume 18, Number 5, Page 1039
[8]
Zorica Bulat, Danijela Đukić-Ćosić, Biljana Antonijević, Aleksandra Buha, Petar Bulat, Zoran Pavlović, and Vesna Matović
Archives of Industrial Hygiene and Toxicology, 2017, Volume 68, Number 1
[9]
Jingjing Tian, Jia Hu, Mingli Chen, Huancai Yin, Peng Miao, Pengli Bai, and Jian Yin
Aquatic Toxicology, 2017, Volume 186, Page 123
[10]
Shiva Najafi, Ali Asghar Moshtaghie, and Ali Noori
Zahedan Journal of Research in Medical Sciences, 2016, Volume In Press, Number In Press
[11]
Xinhe Huang, Yuxing Li, Jingmei Pan, Ming Li, Yongqin Lai, Jie Gao, and Xueru Li
Environmental Microbiology Reports, 2016, Volume 8, Number 6, Page 1038
[12]
Babatunji Emmanuel Oyinloye, Abiola Fatimah Adenowo, Foluso Oluwagbemiga Osunsanmi, Bolajoko Idiat Ogunyinka, Sarah Onyenibe Nwozo, and Abidemi Paul Kappo
SpringerPlus, 2016, Volume 5, Number 1
[13]
Vincenzo Alterio, Emma Langella, Giuseppina De Simone, and Simona Monti
Marine Drugs, 2015, Volume 13, Number 4, Page 1688
[14]
Ahmed A. Allam, Salah N. Maodaa, Rasha Abo-Eleneen, and Jamaan Ajarem
Oxidative Medicine and Cellular Longevity, 2016, Volume 2016, Page 1
[15]
Rausan Zamir, Anowar Hosen, M. Obayed Ullah, and Nilufar Nahar
Evidence-Based Complementary and Alternative Medicine, 2015, Volume 2015, Page 1
[16]
Huancai Yin, Pengli Bai, Peng Miao, Mingli Chen, Jun Hu, Xudong Deng, and Jian Yin
Journal of Applied Toxicology, 2016, Volume 36, Number 7, Page 925
[17]
Adriana C. Vidal, Viktoriya Semenova, Thomas Darrah, Avner Vengosh, Zhiqing Huang, Katherine King, Monica D. Nye, Rebecca Fry, David Skaar, Rachel Maguire, Amy Murtha, Joellen Schildkraut, Susan Murphy, and Cathrine Hoyo
BMC Pharmacology and Toxicology, 2015, Volume 16, Number 1
[18]
Carolina Foot Gomes de Moura, Flávia Andressa Pidone Ribeiro, Gabriela Lucke, Andrea Pitelli Boiago Gollucke, Celina Tizuko Fujiyama Oshima, and Daniel Araki Ribeiro
Journal of Trace Elements in Medicine and Biology, 2015, Volume 32, Page 7
[19]
Joao B. T. Rocha, Rogerio A. Saraiva, Solange C. Garcia, Fernanda S. Gravina, and Cristina W. Nogueira
Toxicology Research, 2012, Volume 1, Number 2, Page 85
[20]
Peng Wu, Chenghui Li, Junbo Chen, Chengbing Zheng, and Xiandeng Hou
Applied Spectroscopy Reviews, 2012, Volume 47, Number 5, Page 327
[21]
Alica Pizent, Blanka Tariba, and Tanja Živković
Archives of Industrial Hygiene and Toxicology, 2012, Volume 63, Number Supplement 1
[22]
M. A. García-Sevillano, N. Abril, R. Fernández-Cisnal, T. García-Barrera, C. Pueyo, J. López-Barea, and J. L. Gómez-Ariza
Metabolomics, 2015, Volume 11, Number 5, Page 1432
[23]
Vesna Matović, Aleksandra Buha, Danijela Ðukić-Ćosić, and Zorica Bulat
Food and Chemical Toxicology, 2015, Volume 78, Page 130
[24]
Stefania Pacini, Maria G. Fiore, Stefano Magherini, Gabriele Morucci, Jacopo J.V. Branca, Massimo Gulisano, and Marco Ruggiero
Medical Hypotheses, 2012, Volume 79, Number 3, Page 403
[25]
Tanja Živković, Blanka Tariba, and Alica Pizent
J. Anal. At. Spectrom., 2014, Volume 29, Number 11, Page 2114
[26]
Yolande Asara, Juan Marchal, Esther Carrasco, Houria Boulaiz, Giuliana Solinas, Pasquale Bandiera, Maria Garcia, Cristiano Farace, Andrea Montella, and Roberto Madeddu
International Journal of Molecular Sciences, 2013, Volume 14, Number 8, Page 16600
[27]
[28]
Kee-Yeon Kum, Qiang Zhu, Kamran Safavi, Yu Gu, Kwang-Shik Bae, and Seok Woo Chang
Australian Endodontic Journal, 2013, Volume 39, Number 3, Page 126
[29]
Aleksandra Buha, Biljana Antonijević, Zorica Bulat, Vesna Jaćević, Vesna Milovanović, and Vesna Matović
Toxicology Letters, 2013, Volume 221, Number 2, Page 83
[30]
Robin A. Bernhoft
The Scientific World Journal, 2013, Volume 2013, Page 1
[31]
Katsuya Unno, Kurumi Yamoto, Kouhei Takeuchi, Aya Kataoka, Tomoya Ozaki, Takatoshi Mochizuki, Kazuki Honda, Nobuhiko Miura, and Masayuki Ikeda
Journal of Applied Toxicology, 2014, Volume 34, Number 2, Page 205
[32]
Kasper P. Kepp
Chemical Reviews, 2012, Volume 112, Number 10, Page 5193
[34]
Zorica Bulat, Danijela Đukić-Ćosić, Biljana Antonijević, Petar Bulat, Dragana Vujanović, Aleksandra Buha, and Vesna Matović
The Scientific World Journal, 2012, Volume 2012, Page 1
[35]
Nobuhiko Miura, Yukie Yanagiba, Katsumi Ohtani, Masaharu Mita, Masako Togawa, and Tatsuya Hasegawa
The Journal of Toxicological Sciences, 2012, Volume 37, Number 1, Page 191

Comments (0)

Please log in or register to comment.
Log in