Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

4 Issues per year


IMPACT FACTOR 2016: 1.395

CiteScore 2016: 1.25

SCImago Journal Rank (SJR) 2016: 0.404
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Open Access
Online
ISSN
0004-1254
See all formats and pricing
More options …
Just Accepted

Issues

Non-Thermal Biomarkers of Exposure to Radiofrequency/Microwave Radiation

Ivančica Trošić / Ivan Pavičić / Ana Marjanović / Ivana Bušljeta
Published Online: 2012-05-01 | DOI: https://doi.org/10.2478/10004-1254-63-2012-2123

Non-Thermal Biomarkers of Exposure to Radiofrequency/Microwave Radiation

This article gives a review or several hypotheses on the biological effects of non-thermal radiofrequency/microwave (RF/MW) radiation and discusses our own findings from animal and in vitro studies performed over the last decade. We have found that RF/MW radiation disturbs cell proliferation and leads to cell differentiation in the bone marrow, which is reflected in the peripheral blood of rats. Repeated RF/MW radiation can also temporarily disrupt melatonin turnover. The observed changes seem to be a sign of adaptation to stress caused by irradiation rather than of malfunction. The article looks further into the basic mechanisms of RF/MW biological action, including cell growth parameters, colony-forming ability, viability, and the polar and apolar protein cytoskeleton structures. The observed reversible cell changes significantly obstructed cell growth. In contrast to the apolar intermediate proteins, the intracellular polar microtubule and actin fibres were damaged by radiation in a time-dependent manner. These significantly altered parameters can be considered as the biomarkers of exposure. Future research should combine dosimetry, experimental studies, and epidemiological data.

Ne-termalni biopokazatelji izloženosti radiofrekvencijskom/mikrovalnom zračenju

Svrha rada je prikaz više hipoteza o biološkom djelovanju ne-termalnih razina radiofrekventnog/mikrovalnog (RF/MW) zračenja i rasprava o rezultatima vlastitih istraživanja na životinjama i in vitro. Istraživanje djelovanja elektromagnetskih polja na organizam uključilo je proučavanje hematopoieze u štakora povremeno izloženih ne-termalnom radiofrekventnom/mikrovalnom (RF/MW) zračenju tijekom supkroničnog pokusa. Rezultati su pokazali neravnotežu u proliferaciji i diferencijaciji stanica koštane srži što se odrazilo na stanične parametre u krvi štakora. U primijenjenim uvjetima zračenja nađeno je da RF/MW može privremeno destabilizirati metabolizam melatonina bez štetnog utjecaja na zdravlje životinja. Razmatrana je mogućnost aktivacije prilagodbenog mehanizma na stres izazvan zračenjem jer smatramo da su nađene promjene prije znak adaptacije nego štetnog učinka zračenja. Pristup temeljnim mehanizmima biološkog djelovanja RF/MW zračenja uključio je istraživanje parametara staničnog rasta, sposobnosti stvaranja kolonija, vijabilnosti te polarnih i nepolarnih proteinskih struktura citoskeleta nakon ozračivanja stanica. Reverzibilne promjene staničnih svojstava koje su nađene upućuju na značajnu opstrukciju staničnog rasta. Za razliku od nepolarnih intermedijarnih proteina, unutarstanična polarna vlakna mikrotubula i aktina su, ovisno o vremenu izloženosti, pokazala značajna oštećenja uzrokovana zračenjem. Statistički sznačajno promijenjeni parametri smatrani su biomarkerima izloženosti. Istaknuta je potreba za budućim istraživanjima koja uključuju epidemiološke, laboratorijske i dozimetrijske studije.

Keywords: RF/MW; non-thermal; radiation; biological markers; in vivo; in vitro

Keywords: biološki pokazatelji; in vitro; in vivo; ne-termalno; RF/MW; zračenje

  • European Commission, Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Health Effects of Exposure to EMF [displayed 18 January 2012]. Available at http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_022.pdf

  • Independent Expert Group on Mobile Phones (IEGMP). Report of the Group (The Stewart Report) [displayed 13 July 2011]. Available at http://www.iegmp.org.uk

  • Trošić I, Pavičić I, Marjanović AM. Prednosti i mane korištenja mobilne komunikacije [Pros and Cons of Mobile Communication, in Croatian]. In: Srb N, editor. Proceedings EIS 2011 of the 22 International Conference "Electrical Engineering Symposium" Josip Lončar Days; 2-5 May 2011; Šibenik, Croatia. Zagreb: Elektrotehničko društvo Zagreb; 2011. p. 3-6.Google Scholar

  • Cleveland RF, Ulcek JL, Jr. Questions and answers about biological effects and potential hazards of radiofrequency electromagnetic fields. OET Bull 1999;56:1-36.Google Scholar

  • World Health Organization (WHO). Electromagnetic Fields (300 Hz to 300 GHz). Environmental Health Criteria 137. Geneva: WHO; 1993.Google Scholar

  • Cleary SF. In vitro studies of the effects of nonthermal radiofrequency and microwave radiation. In: Bernhard JH, Matthes R, Repacholy MH, editors. Non-thermal effects of RF electromagnetic fields. ICNIRP 3/97. München: Märkl-Druck Print; 1997. p. 119-30.Google Scholar

  • Dasdag S, Bilgin HM, Akdag MZ, Celik H, Aksen F. Effect of long term mobile phone exposure on oxidative processes and nitric oxide in rats. Biotechnol & Biotechnol Eq 2008;22:992-7.Google Scholar

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Tesler J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84.Web of ScienceCrossrefPubMedGoogle Scholar

  • Fröhlich H. The biological effects of microwaves and related questions. Adv Electronics Electron Phys 1980;53:85-8.Google Scholar

  • Tenforde TS. Biological interactions of radiofrequency fields. In: Bernhard JH, Matthes R, Repacholy MH, editors. Nonthermal effects of RF electromagnetic fields. ICNIRP 3/97. München: Märkl-Druck Print; 1997. p. 65-78.Google Scholar

  • Fröhlich H. Long-range coherence and energy storage in biological systems. Int J Quantum Chem 1968;2:641-9.CrossrefGoogle Scholar

  • Adey WR. Cell and molecular biology associated with radiation fields of mobile telephones. In: Stone WR, Ueno S, editors. Review of radio science 1996-1999. Oxford: Oxford University Press; 1999. p. 845-72.Google Scholar

  • Trošić I, Mataušić-Pišl M, Radalj Ž, Prlić I. Animal study on electromagnetic field biological potency. Arh Hig Rada Toksikol 1999;50:5-11.Google Scholar

  • Kreja L, Selig C, Plappert U, Nothdurft W. Radiation-induced DNA damage in canine hemopoietic cells and stromal cells as measured by the Comet Assay. Environ Mol Mutagen 1996;45:39-45.CrossrefGoogle Scholar

  • Car BD. The hematopoietic system. In: Weiss DJ, Wardrop KJ, editors. Schalm's veterinary hematology. 6th ed. Ames; Wiley-Blackwell; 2010. p. 27-36.Google Scholar

  • Bušljeta I, Trošić I, Milković-Kraus S. Erythropoietic changes in rats after 2.45 GHz nonthermal irradiation. Int J Hyg Environ Health 2004;207:1-6.Google Scholar

  • Bušljeta I. Utjecaj radiofrekventnog mikrovalnog zračenja na krvotvorno tkivo štakora [Impact of radiofrequency microwave irradiation on hematopoietic tissue of rats, in Croatian]. [MS thesis]. Zagreb: Faculty of Medicine, University of Zagreb; 2002.Google Scholar

  • Bušljeta I, Trošić I, Milković-Kraus, S. Erythropoietic aberrations in bone marrow of rats after microwave irradiation. In: Kostarakis P, editor. Proceedings of the Biological Effects of EFMs 2nd International Workshop; 7-11 Oct 2002; Rhodes, Greece. Athens: Institute of Informatics and Telecommunications NCSR "Demokritos"; 2002. p. 739-43.Google Scholar

  • Trošić I, Bušljeta I. Erythropoietic dynamic equilibrium in rats maintained after microwave exposure. Exp Toxicol Pathol 2006;57:247-51.CrossrefPubMedGoogle Scholar

  • Unanue ER. Macrophages, antigen-presenting cells and phenomena of antigen handling and presentation. In: Paul WE, editor. Fundamental immunology. 3rd ed. Philadelphia: Lipincott-Raven; 1993. p. 111-44.Google Scholar

  • Dasdag S, Oflazoglu H, Kelle M, Akdag Z. Efects of microwave on the phagocytic activity of variously treated rat macrophages. Electro Magnetobiol 1998;17:185-94.Google Scholar

  • Trošić I. Multinucleated giant cell appearance after whole body microwave irradiation of rats. Int J Hyg Environ Health 2001;204:133-8.Google Scholar

  • Trošić I, Bušljeta I, Pavičić I. Blood-forming system in rats after whole-body microwave exposure; reference to the lymphocytes. Toxicol Lett 2004;154:125-32.PubMedCrossrefGoogle Scholar

  • Stevens RG, Davis S. The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect 1996;104(Suppl 1):135-40.Google Scholar

  • Brainard GC, Kavet R, Kheifets LI. The relationship between electromagnetic field and light exposure to melatonin and breast cancer risk: A review of the relevant literature. J Pineal Res 1999;26:65-100.CrossrefGoogle Scholar

  • Trošić I, Bušljeta I, Pavičić I, Milković-Kraus S. Nocturnal urinary melatonin levels and urine biochemistry in microwave-irradiated rats. Biologia 2009;64:798-802.CrossrefWeb of ScienceGoogle Scholar

  • Pavičić I, Trošić I. Impact of 864 MHz or 935 MHz radiofrequency microwave radiation on the basic growth parameters of V79 cell line. Acta Biol Hung 2008;59:67-76.Web of ScienceGoogle Scholar

  • Pavičić I. Biološki pokazatelji učinka radiofrekvencijskog mikrovalnog zračenja (935 MHz) na V79 stanice u kulturi [Biological markers of radiofrequency microwave radiation (935 MHz) effect on V79 cell culture, in Croatian] [MS thesis]. Zagreb: Faculty of Science, University of Zagreb; 2005.Google Scholar

  • Kwee S, Rasmark P. Changes in cell proliferation due to environmental non-ionizing radiation. 2. Microwave radiation. Bioelectrochem Bioenerg 1998;44:251-5.CrossrefGoogle Scholar

  • Grundler W, Kaiser F. Experimental evidence for coherent excitations correlated with cell growth. Nanobiology 1992;1:163-76.Google Scholar

  • Grundler W, Kaiser F, Keilmann F, Walleczek J. Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften 1992;79:551-9.CrossrefPubMedGoogle Scholar

  • Pavičić I. Djelovanje radiofrekvencijskog zračenja na strukturu citoskeleta stanica u kulturi [Influence of radiofrequency radiation on cytoskeleton structure of cells in culture, in Croatian] [PhD thesis]. Zagreb: Faculty of Science, University of Zagreb; 2008.Google Scholar

  • Pavičić I, Trošić I. Influence of 864 MHz electromagnetic field on growth kinetics of established cell line. Biologia 2006;61:321-5.Google Scholar

  • Ortner MJ, Galvin MJ, Irwin RD. The effect of 2450-MHz microwave radiation during microtubular polymerization in vitro. Radiat Res 1983;93:353-63.Google Scholar

  • Pokorný J, Jelínek F, Trkal V, Šrobár F. Vibration in microtubules. U: Bersam F, editor. Electricity and magnetism in biology and medicine. Bologna: Kluwer Academic/Plenum Publishers; 1999. p. 967-70.Google Scholar

  • Pokorný J, Jelínek F, Trkal V. Electric field around microtubules. Bioelectrochem Bioenerg 1998;45:239-45.CrossrefGoogle Scholar

  • Pokorný J. Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 2004;63:321-6.PubMedCrossrefGoogle Scholar

  • Trošić I, Pavičić I, Bušljeta I, Mataušić-Pišl M, Milković-Kraus S. Djelovanje radiofrekvencijskog pojasa neionizirajućeg elektromagnetskog zračenja na razini stanice [Activity of radiofrequency radiation at the cell level, in Croatian]. Arh Hig Rada Toksikol 2010;61(Suppl):45-52.Google Scholar

  • Pavičić I, Trošić I. In vitro testing of cellular response to ultra high frequency electromagnetic field radiation. Toxicol in Vitro 2008;22:1344-8.Web of ScienceCrossrefGoogle Scholar

  • Pacini S, Ruggiero M, Sardi I, Aterini S, Gulisano F, Gulisano M. Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncol Res 2002;13:19-24.PubMedGoogle Scholar

  • Stagg RB, Thomas WJ, Jones RA, Adey WR. DNA synthesis and cell proliferation in C6 glioma and primary glial cells exposed to a 836.55 MHz modulated radiofrequency field. Bioelectromagnetics 1997;18:230-6.Google Scholar

  • Bohr H, Bohr J. Microwave-enhanced folding and denaturation of globular proteins. Phys Rev E 2000;61:4310-4.CrossrefGoogle Scholar

  • Bohr H, Bohr J. Microwave enhanced kinetics observed in ORD studies of a protein. Bioelectromagnetics 2000;21/1, 68-72.Google Scholar

  • George DF, Bilek MM, McKenzie DR. Non-thermal effects in the microwave induced unfolding of proteins observed by chaperone binding. Bioelectromagnetics 2008;29:324-30.Web of ScienceCrossrefPubMedGoogle Scholar

  • Leszczynski D, Joenvaara S, Reivinen J, Kuokka R. Nonthermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanisms for cancer- and blood-brain barrier-related effects. Differentiation 2002;70:120-9.CrossrefGoogle Scholar

  • Marjanović AM, Domjan A-M, Fleis D, Pavičić I. Pokazatelji oksidacijskog oštećenja makromolekula i antioksidacijske obrane u ispitanika izloženih radarskom zračenju frekvencija od 1,5 GHz do 10,9 GHz [Indicators of macromolecular oxidative damage and antioxidant defence in examinees exposed to the radar frequencies 1.5-10.9 GHz, in Croatian]. In: Krajcar Bronić I, Kopjar N, Milić M, Branica G, editors. Proceedings of the Eight Symposium of the Croatian Radiation Protection Association. 13-15 April 2011; Krk, Croatia. Zagreb: Denona; 2011. p. 513-7.Google Scholar

  • WHO Research Agenda for Radiofrequency Fields [displayed 5 March 2012]. Available at http://whqlibdoc.who.int/publications/2010/9789241599948_eng.pdf

  • Repacholi MH. Health risks from the use of mobile phones. Toxicol Lett 2001;120:323-31.PubMedCrossrefGoogle Scholar

About the article


Published Online: 2012-05-01

Published in Print: 2012-04-01


Citation Information: Archives of Industrial Hygiene and Toxicology, ISSN (Print) 0004-1254, DOI: https://doi.org/10.2478/10004-1254-63-2012-2123.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Steven Curley, Flavio Palalon, Kelly Sanders, and Nadezhda Koshkina
International Journal of Environmental Research and Public Health, 2014, Volume 11, Number 9, Page 9142
[2]
Hui Wang, Ruiyun Peng, Hongmei Zhou, Shuiming Wang, Yabing Gao, Lifeng Wang, Zheng Yong, Hongyan Zuo, Li Zhao, Ji Dong, Xinping Xu, and Zhentao Su
International Journal of Radiation Biology, 2013, Volume 89, Number 12, Page 1100
[3]
Azadeh Hekmat, Ali Akbar Saboury, and Ali Akbar Moosavi-Movahedi
Ecotoxicology and Environmental Safety, 2013, Volume 88, Page 35

Comments (0)

Please log in or register to comment.
Log in