Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

4 Issues per year


IMPACT FACTOR 2016: 1.395

CiteScore 2016: 1.25

SCImago Journal Rank (SJR) 2016: 0.404
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Open Access
Online
ISSN
0004-1254
See all formats and pricing
More options …
Volume 63, Issue 2

Issues

The Margin of Exposure to Formaldehyde in Alcoholic Beverages

Yulia Monakhova
  • Department of Chemistry, Saratov State University, Saratov, Russia
  • Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julien Jendral / Dirk Lachenmeier
Published Online: 2012-06-21 | DOI: https://doi.org/10.2478/10004-1254-63-2012-2201

The Margin of Exposure to Formaldehyde in Alcoholic Beverages

Formaldehyde has been classified as carcinogenic to humans (WHO IARC group 1). It causes leukaemia and nasopharyngeal cancer, and was described to regularly occur in alcoholic beverages. However, its risk associated with consumption of alcohol has not been systematically studied, so this study will provide the first risk assessment of formaldehyde for consumers of alcoholic beverages.

Human dietary intake of formaldehyde via alcoholic beverages in the European Union was estimated based on WHO alcohol consumption data and literature on formaldehyde contents of different beverage groups (beer, wine, spirits, and unrecorded alcohol). The risk assessment was conducted using the margin of exposure (MOE) approach with benchmark doses (BMD) for 10 % effect obtained from dose-response modelling of animal experiments.

For tumours in male rats, a BMD of 30 mg kg-1 body weight per day and a "BMD lower confidence limit" (BMDL) of 23 mg kg-1 d-1 were calculated from available long-term animal experiments. The average human exposure to formaldehyde from alcoholic beverages was estimated at 8·10-5 mg kg-1 d-1. Comparing the human exposure with BMDL, the resulting MOE was above 200,000 for average scenarios. Even in the worst-case scenarios, the MOE was never below 10,000, which is considered to be the threshold for public health concerns.

The risk assessment shows that the cancer risk from formaldehyde to the alcohol-consuming population is negligible and the priority for risk management (e.g. to reduce the contamination) is very low. The major risk in alcoholic beverages derives from ethanol and acetaldehyde.

Granica izlaganja formaldehidu u alkoholnim pićima

Formaldehid je kancerogen za ljude te je klasificiran u skupinu 1 prema WHO IARC-u. Uzrokuje leukemiju i nazofaringealni karcinom, a navodi se i kao redoviti sastojak alkoholnih pića. Međutim, rizik od izlaganja formaldehidu konzumacijom alkoholnih pića nije sustavno istražen pa će ovo istraživanje pružiti prvu takvu procjenu rizika. Količina formaldehida koju ljudi unose alkoholnim pićima u Europskoj je uniji procijenjena temeljem podataka Svjetske zdravstvene organizacije o konzumaciji alkohola i literature o sadržaju formaldehida u različitim skupinama alkoholnih pića (pivo, vino, jaka alkoholna pića i neregistrirani alkohol). Procjena rizika obavljena je korištenjem pristupa granice izlaganja (eng. margin of exposure, MOE) i graničnih doza (eng. benchmark doses, BMD) za 10 %-tni učinak koji se postiže modeliranjem odnosa doza-odgovor u ispitivanjima provedenima na životinjama. BMD od 30 mg kg-1 tjelesne težine na dan i BMD s nižom granicom pouzdanosti (BMDL) od 23 mg kg-1 d-1 izračunati su za tumore kod mužjaka štakora temeljem raspoloživih dugotrajnih ispitivanja provedenih na životinjama. Prosječno izlaganje ljudi formaldehidu u alkoholnim pićima procijenjeno je na 8·10-5 mg kg-1 d-1. U usporedbi s BMDL vrijednošću krajnji MOE je iznosio više od 200.000 u prosječnim situacijama. Čak i u najlošijim situacijama MOE nije nikada bio niži od 10.000, što se smatra graničnom vrijednošću za zdravlje ljudi. Procjena rizika pokazuje da je rizik od nastanka karcinoma uslijed izlaganja formaldehidu iz alkoholnih pića zanemariv te da je prioritet upravljanja rizikom u takvim slučajevima (npr. kako bi se smanjila kontaminacija) vrlo nizak. Najveći rizik proizlazi iz etanola i acetaldehida koji se također nalaze u alkoholnim pićima.

Keywords: alcohol; alcohol consumption; aldehydes; cancer; risk assessment

Keywords: alkohol; aldehidi; karcinom; konzumacija alkohola; procjena rizika

  • Feron VJ, Til HP, de Vrijer F, Woutersen RA, Cassee FR, van Bladeren PJ. Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res 1991;259:363-85.Google Scholar

  • Wotld Health Organization (WHO). Formaldehyde. Concise international chemical assessment document 40. Geneva: WHO; 2002.Google Scholar

  • National Toxicology Program (NTP). Final report on carcinogens background document for formaldehyde. Rep Carcinog Backgr Doc 2010;(10-5981):i-512.Google Scholar

  • Soffritti M, Belpoggi F, Lambertin L, Lauriola M, Padovani M, Maltoni C. Results of long-term experimental studies on the carcinogenicity of formaldehyde and acetaldehyde in rats. Ann N Y Acad Sci 2002;982:87-105.Google Scholar

  • Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V; WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens - Part F: chemical agents and related occupations. Lancet Oncol 2009;10:1143-4.CrossrefGoogle Scholar

  • Wotld Health Organization (WHO). Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 88. Geneva: WHO; 2006.Google Scholar

  • US Environmental Protection Ageny (US EPA). Formaldehyde (CASRN 50-00-0). Integrated Risk Information System. Document 0419. Washington (DC): US EPA; 1998.Google Scholar

  • Penteado JCP, Sobral AC, Masini JC. Evaluation of monolithic columns for determination of formaldehyde and acetaldehyde in sugar cane spirits by high-performance liquid chromatography. Anal Lett 2008;41:1674-81.CrossrefGoogle Scholar

  • Sampaio OM, Reche RV, Franco DW. Chemical profile of rums as a function of their origin. The use of chemometric techniques for their identification. J Agric Food Chem 2008;56:1661-8.Google Scholar

  • Lachenmeier DW, Schoeberl K, Kanteres F, Kuballa T, Sohnius E-M, Rehm J. Is contaminated unrecorded alcohol a health problem in the Europeab Union? A review of existing and methodological outline for future sdudies. Addiction 2011;106(Suppl 1):20-30.CrossrefGoogle Scholar

  • Jendral JA, Monakhova YB, Lachenmeier DW. Formaldehyde in alcoholic beverages: large chemical survey using purpald screening followed by chromotropic Acid spectrophotometry with multivariate curve resolution. Int J Anal Chem 2011;2011:1-11.Google Scholar

  • Paine AJ, Dayan AD. Defining a tolerable concentration of methanol in alcoholic drinks. Hum Exp Toxicol 2001;20:563-8.PubMedCrossrefGoogle Scholar

  • Lachenmeier DW, Haupt S, Schulz K. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products. Regul Toxicol Pharmacol 2008;50:313-21.Google Scholar

  • Lachenmeier DW, Kanteres F, Rehm J. Carcinogenicity of acetaldehyde in alcoholic beverages: risk assessment outside ethanol metabolism. Addiction 2009;104:533-50.Google Scholar

  • EFSA. Ethyl carbamate and hydrocyanic acid in food and beverages. EFSA J 2007;551:1-44.Google Scholar

  • European Food Safety Authority (EFSA). Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J 2005;282:1-31.Google Scholar

  • Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA. Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res 1983;43:4382-92.PubMedGoogle Scholar

  • Monticello TM, Swenberg JA, Gross EA, Leininger JR, Kimbell JS, Seilkop S, Starr TB, Gibson JE, Morgan KT. Correlation of regional and nonlinear formaldehyde-induced nasal cancer with proliferating populations of cells. Cancer Res 1996;56:1012-22.Google Scholar

  • Kamata E, Nakadate M, Uchida O, Ogawa Y, Suzuki S, Kaneko T, Saito M, Kurokawa Y. Results of a 28-month chronic inhalation toxicity study of formaldehyde in male Fisher-344 rats. J Toxicol Sci 1997;22:239-54.CrossrefGoogle Scholar

  • Til HP, Woutersen RA, Feron VJ, Hollanders VHM, Falke HE, Clary JJ. 2-Year drinking-water study of formaldehyde in rats. Food Chem Toxicol 1989;27:77-87.Google Scholar

  • Tobe M, Naito K, Kurokawa Y. Chronic toxicity study on formaldehyde administered orally to rats. Toxicology 1989;56:79-86.Google Scholar

  • Takahashi M, Hasegawa R, Furukawa F, Toyoda K, Sato H, Hayashi Y. Effects of ethanol, potassium metabisulfite, formaldehyde and hydrogen-peroxide on gastric carcinogenesis in rats after initiation with N-methyl-N'-nitro-N-nitrosoguanidine. Jpn J Cancer Res 1986;77:118-24.Google Scholar

  • US Environmental Protection Agency (US EPA). The use of the benchmark dose approach in health risk assessment. EPA/630/R-94/007. Washington (DC): US EPA; 1995.Google Scholar

  • Skog E. A toxicological investigation of lower aliphatic aldehydes. I. Toxicity of formaldehyde, acetaldehyde, propionaldehyde and butyraldehyde; as well as acrolein and crotonaldehyde. Acta Pharmacol Toxicol 1950;6:299-318.Google Scholar

  • Trezl L, Csiba A, Juhasz S, Szentgyorgyi M, Lombai G, Hullan L. Endogenous formaldehyde level of foods and its biological significance. Z Lebensm Unters Forsch A 1997;205:300-4.Google Scholar

  • Cui X, Fang G, Jiang L, Wang S. Kinetic spectrophotometric method for rapid determination of trace formaldehyde in foods. Anal Chim Acta 2007;590:253-9.Google Scholar

  • Wang S, Cui X, Fang G. Rapid determination of formaldehyde and sulfur dioxide in food products and Chinese herbals. Food Chem 2007;103:1487-93.Google Scholar

  • Bianchi F, Careri M, Musci M, Mangia A. Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis. Food Chem 2007;100:1049-53.Google Scholar

  • Lawrence JF, Iyengar JR. The determination of formaldehyde in beer and soft drinks by HPLC of the 2,4-dinitrophenylhydrazone derivative. Int J Environ Anal Chem 1983;15:47-52.Google Scholar

  • de Oliveira EA, de Andrade JB. Simultaneous determination of formaldehyde and acetaldehyde and their respective hydroxyalkylsulfonic acids by HPLC. Quimica Nova 1994;17:13-6.Google Scholar

  • de Andrade JB, Reis JN, Rebouças MV, Pinheiro HLC, Andrade MV. Determination of formaldehyde and acetaldehyde in drinking water and alcoholic beverages by high performance liquid chromatography (HPLC). Quimica Anal 1996;15:144-7.Google Scholar

  • Nascimento RF, Marques JC, Neto BSL, De Keukeleire D, Franco DW. Qualitative and quantitative high-performance liquid chromatographic analysis of aldehydes in Brazilian sugar cane spirits and other distilled alcoholic beverages. J Chromatogr A 1997;782:13-23.Google Scholar

  • Ebeler SE, Spaulding RS. Characterization and measurement of aldehydes in wine. In: Waterhouse AL, Ebeler SE, editors. Chemistry of wine flavor. Washington (DC): American Chemical Society; 1998. p. 166-79.Google Scholar

  • Lau MN, Ebeler JD, Ebeler SE. Gas chromatographic analysis of aldehydes in alcoholic beverages using a cysteamine derivatization procedure. Am J Enol Vitic 1999;50:324-33.Google Scholar

  • Wardencki W, Sowinski P, Curylo J. Evaluation of headspace solid-phase microextraction for the analysis of volatile carbonyl compounds in spirits and alcoholic beverages. J Chromatogr A 2003;984:89-96.Google Scholar

  • Burini G, Coli R. Determination of formaldehyde in spirits by high-performance liquid chromatography with diode-array detection after derivatization. Anal Chim Acta 2004;511:155-8.Google Scholar

  • Curylo J, Wardencki W. HS-SPME-CGC-PID determination of aldehydes in rectified spirits and vodkas after derivatisation with 2,4,6-trichlorophenylhydrazine (TCPH). Chem Anal (Warsaw) 2005;50:735-48.Google Scholar

  • Anonymous. Chinese brewing industry defend use of formaldehyde. Modern Brewery Age 2005 July 18.Google Scholar

  • Rodríquez DM, Wrobel K, Wrobel K. Determination of aldehydes in tequila by high-performance liquid chromatography with 2,4-dinitrophenylhydrazine derivatization. Eur Food Res Technol 2005;221:798-802.Google Scholar

  • Sowinski P, Wardencki W, Partyka M. Development and evaluation of headspace gas chromatography method for the analysis of carbonyl compounds in spirits and vodkas. Anal Chim Acta 2005;539:17-22.Google Scholar

  • Curylo J, Wardencki W. Application of single drop extraction (SDE) gas chromatography method for the determination of carbonyl compounds in spirits and vodkas. Anal Lett 2006;39:2629-42.CrossrefGoogle Scholar

  • Park YS, Lee YJ, Lee KT. Analysis of formaldehyde and acetaldehyde in alcoholic beverage. J Korean Soc Food Sci Nutr 2006;35:1412-9.Google Scholar

  • Wu QJ, Lin H, Fan W, Dong JJ, Chen HL. Investigation into benzene, trihalomethanes and formaldehyde in Chinese lager beers. J Inst Brew 2006;112:291-4.Google Scholar

  • de Oliveira FS, Sousa ET, de Andrade JB. A sensitive flow analysis system for the fluorimetric determination of low levels of formaldehyde in alcoholic beverages. Talanta 2007;73:561-6.Google Scholar

  • Miyakawa H, Fujinuma K, Kamata K. Determination of formaldehyde in beer. Ann Rep Tokyo Metropol Inst Public Health 2007;58:185-8.Google Scholar

  • Elias RJ, Laurie VF, Ebeler SE, Wong JW, Waterhouse AL. Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection. Anal Chim Acta 2008;626:104-10.Google Scholar

  • Zhao XQ, Zhang ZQ. Microwave-assisted on-line derivatization for sensitive flow injection fluorometric determination of formaldehyde in some foods. Talanta 2009;80:242-5.PubMedCrossrefGoogle Scholar

  • Zhao XQ, Zhang ZQ. Rapid and sensitive determination of formaldehyde in some beverages and foods by flow-injection fluorimetric analysis. Int J Food Sci Technol 2009;44:216-21.CrossrefGoogle Scholar

  • International Agency for Research on Cancer (IARC). Acetaldehyde. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 71. Lyon: IARC; 1999.Google Scholar

  • Lund K, Petersen J. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic. Food Addit Contam 2006;23:948-55.PubMedCrossrefGoogle Scholar

  • Bradley EL, Boughtflower V, Smith TL, Speck DR, Castle L. Survey of the migration of melamine and formaldehyde from melamine food contact articles available on the UK market. Food Addit Contam 2005;22:597-606.CrossrefPubMedGoogle Scholar

  • Ishiwata H, Inoue T, Tanimura A. Migration of melamine and formaldehyde from tableware made of melamine resin. Food Addit Contam 1986;3:63-70.PubMedCrossrefGoogle Scholar

  • Wong JW, Ngim KK, Shibamoto T, Mabury SA, Eiserich JP, Yeo HCH. Determination of formaldehyde in cigarette smoke. J Chem Educ 1997;74:1100-3.CrossrefGoogle Scholar

  • Appel K, Bernauer U, Herbst U, Madle S, Schulte A, Richter-Reichhelm H, Gundert-Remy, U. Kann für Formaldehyd eine "sichere" Konzentration abgeleitet werden? - Analyse der Daten zur krebserzeugenden Wirkung [Can a "safe" concentration be established for formaldehyde? - Analysis of carcinogenicity data, in German]. Forsch Prax 2006;11:347-61.Google Scholar

  • Lachenmeier DW, Kanteres F, Rehm J. Epidemiology-based risk assessment using the benchmark dose/margin of exposure approach: the example of ethanol and liver cirrhosis. Int J Epidemiol 2011;40:210-8.CrossrefPubMedGoogle Scholar

  • Lachenmeier DW, Przybylski MC, Rehm J. Comparative risk assessment of carcinogens in alcoholic beverages using the margin of exposure approach. Int J Cancer 2012, DOI: 10.1002/ijc.27553.CrossrefPubMedGoogle Scholar

About the article


Published Online: 2012-06-21

Published in Print: 2012-06-01


Citation Information: Archives of Industrial Hygiene and Toxicology, Volume 63, Issue 2, Pages 227–237, ISSN (Print) 0004-1254, DOI: https://doi.org/10.2478/10004-1254-63-2012-2201.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Md Sazedul Hoque, Liesbeth Jacxsens, Md Boktheir Hossain, A.K.M. Nowsad Alam, S.M. Oasiqul Azad, Bruno De Meulenaer, Carl Lachat, and Matiur Rahman
Chemosphere, 2017
[2]
Xiao-Na Pang, Zhao-Jie Li, Jing-Yu Chen, Li-Juan Gao, and Bei-Zhong Han
Journal of Food Protection, 2017, Volume 80, Number 3, Page 431
[3]
Tabea Pflaum, Thomas Hausler, Claudia Baumung, Svenja Ackermann, Thomas Kuballa, Jürgen Rehm, and Dirk W. Lachenmeier
Archives of Toxicology, 2016, Volume 90, Number 10, Page 2349
[4]
Lahiru N Jayakody, Stephan Lane, Heejin Kim, and Yong-Su Jin
Current Opinion in Biotechnology, 2016, Volume 37, Page 173
[5]
Jingchan Zhao, Gailing Wang, Ting Cao, and Zhian Guo
Food Analytical Methods, 2016, Volume 9, Number 1, Page 156
[6]
Yulia B. Monakhova, Thomas Kuballa, Gerd Mildau, Evamaria Kratz, Andrea Keck-Wilhelm, Christopher Tschiersch, and Dirk W. Lachenmeier
International Journal of Cosmetic Science, 2013, Volume 35, Number 2, Page 201

Comments (0)

Please log in or register to comment.
Log in