Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

4 Issues per year


IMPACT FACTOR 2016: 1.395

CiteScore 2016: 1.25

SCImago Journal Rank (SJR) 2016: 0.404
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Open Access
Online
ISSN
0004-1254
See all formats and pricing
More options …
Volume 64, Issue 2 (Jun 2013)

Issues

Mutagenicity and DNA Damage of Bisphenol a and its Structural Analogues in Hepg2 Cells

Anja Fic / Bojana Žegura
  • National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marija Sollner Dolenc / Metka Filipič
  • National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucija Peterlin Mašič
Published Online: 2013-07-02 | DOI: https://doi.org/10.2478/10004-1254-64-2013-2319

Environmental oestrogen bisphenol A (BPA) and its analogues are widespread in our living environment. Because their production and use are increasing, exposure of humans to bisphenols is becoming a significant issue. We evaluated the mutagenic and genotoxic potential of eight BPA structural analogues (BPF, BPAF, BPZ, BPS, DMBPA, DMBPS, BP-1, and BP-2) using the Ames and comet assay, respectively. None of the tested bisphenols showed a mutagenic effect in Salmonella typhimurium strains TA98 and TA100 in either the presence or absence of external S9-mediated metabolic activation (Aroclor 1254-induced male rat liver). Potential genotoxicity of bisphenols was determined in the human hepatoma cell line (HepG2) at non-cytotoxic concentrations (0.1 μmol L-1 to 10 μmol L-1) after 4-hour and 24-hour exposure. In the comet assay, BPA and its analogue BPS induced significant DNA damage only after the 24-hour exposure, while analogues DMBPS, BP-1, and BP-2 induced a transient increase in DNA strand breaks

Sažetak

Okoljski estrogen, bisfenol A (BPA), in njegovi strukturni analogi so v veliki meri prisotni v našem okolju. Ker njihova proizvodnja in uporaba naraščata, je vse pomembneje ovrednotiti njihovo toksičnost zaradi izpostavljenosti ljudem. Z Amesovim in kometnim testom smo ovrednotili mutagenost in genotoksičnost osmih strukturnih analogov BPA (BPF, BPAF, BPZ, BPS, DMBPA, DMBPS, BP-1 in BP-2). Nobeden od testiranih bisfenolov ni izkazoval mutagenega delovanja na sevih TA98 in TA100 Salmonelle tryhimurium v prisotnosti in odsotnosti metabolne aktivacije (z Aroklorom 1254 inducirani encimi podganjih jeter). Potencialno genotoksičnost pa smo določali s kometnim testom na celični liniji humanega hepatoma (HepG2) pri necitotoksičnih koncentracijah (0.1 μmol L-1 do 10 μmol L-1) po 4-urni in 24-urni izpostavljenosti. BPA in njegov analog BPS sta pri kometnem testu povzročila poškodbe DNA samo po 24-urni izpostavljenosti, medtem ko so analogi DMBPS, BP-1 in BP-2 povzročili prehodne poškodbe DNA (samo po 4-urni izpostavljenosti). BPF, BPAF, BPZ in DMBPA niso povzročili poškodb DNA.

Keywords : Ames test; bisphenols; comet assay; genotoxicity

Ključne Besede : Amesov test; bisfenoli; kometni test

  • 1. World Health Organization (WHO). Joint FAO/WHO Expert Meeting to Review Toxicological and Health Aspects of Bisphenol A [displayed 30 May 2011]. Available at http:// www.who.int/entity/foodsafety/chem/chemicals/BPA_Summary2010.pdfGoogle Scholar

  • 2. Maffini MV, Rubin BS, Sonnenschein C, Soto AM. Endocrine disruptors and reproductive health: The case of bisphenol-A. Mol Cell Endocrinol 2006;254:179-86.Google Scholar

  • 3. Rasier G, Toppari J, Parent AS, Bourguignon JP. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: A review of rodent and human data. Mol Cell Endocrinol 2006;254:187-201.Google Scholar

  • 4. Screening Assessment for the Challenge Phenol, 4,4’ -(1- methylethylidene)bis- (Bisphenol A).Chemical Abstracts Service Registry Number 80-05-7. Environment Canada 2008 [displayed 11 Sept 2012]. Available at http://www.ec.gc.ca/ese-ees/3C756383-BEB3-45D5-B8D3-E8C800F35243/batch2_80-05-7_en.pdfGoogle Scholar

  • 5. Appleton. Nation’s Largest Maker of Thermal Receipt Paper Does Not Use BPA [displayed at 23 May 2013]. Available at http://www.appletonideas.com/pdf/Appleton%20BPA%20free%20news%20release.7.27.2010.pdfGoogle Scholar

  • 6. EU directive 2011/8/EU. Commission directive 2011/8/EU of 28 January 2011. [displayed 3 June 2011]. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ: L:2011:026:0011:0014:EN:PDFGoogle Scholar

  • 7. Chen MY, Ike M, Fujita M. Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ Toxicol 2002;17:80-6. doi: 10.1002/tox.10035CrossrefGoogle Scholar

  • 8. Kuruto-Niwa R, Nozawa R, Miyakoshi T, Shiozawa T, Terao Y. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system. Environ Toxicol Pharmacol 2005;19:121-30. doi: 10.1016/ j.etapCrossrefGoogle Scholar

  • 9. Raloff J. Receipts a large - and largely ignored - source of BPA. ScienceNews.org. [displayed 30 August 2010]. Available at http://www.sciencenews.org/view/generic/id/61764/title/Receipts_a_large_%E2%80%94_and_largely_ignored_%E2%80%94_source_of_BPAGoogle Scholar

  • 10. Danzl E, Sei K, Soda S, Ike M, Fujita M. Biodegradation of bisphenol A, bisphenol F and bisphenol S in Seawater. Int J Environ Res Public Health 2009;6:1472-84. doi: 10.3390/ ijerph6041472CrossrefGoogle Scholar

  • 11. Ike M, Chen MY, Danzl E, Sei K, Fujita M. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions. Water Sci Technol 2006;53:153-9. doi: 10.3390/ ijerph6041472PubMedCrossrefGoogle Scholar

  • 12. US Patent. 1978. 4,098,769 [displayed 8 December 2011]. Available at http://www.patents.com/us-4098769.htmlGoogle Scholar

  • 13. Lotti N, Colonna M, Fiorini M, Finelli L, Berti C. Poly(butylene terephthalate) modified with ethoxylated bisphenol S with increased glass transition temperature and improved thermal stability. Polymer 2011;52:904-11. doi: 10.1016/j.polymer.2011.01.018CrossrefGoogle Scholar

  • 14. Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H, Ohta S. Comparative Study of the Endocrine-Disrupting Activity of Bisphenol A and 19 Related Compounds. Toxicol Sci 2005;84:249-59. doi: 10.1093/toxsci/kfi074CrossrefGoogle Scholar

  • 15. Tsutsui T, Tamura Y, Suzuki A, Hirose Y, Kobayashi M, Nishimura H, Metzler M, Barrett JC. Mammalian cell transformation and aneuploidy induced by five bisphenols. Int J Cancer 2000;86:151-4. doi: 10.1002/(SICI)1097-0215(20000415)86:2<151::AID-IJC1>3.0.CO;2-0CrossrefGoogle Scholar

  • 16. National Toxicology Program (NTP). Chemical Information Profile for Bisphenol AF [CAS No. 1478-61-1], Supporting Nomination for Toxicological Evaluation by the National Toxicology Program [displayed 30 March 2011]. Available at http://ntp.niehs.nih.gov/ntp/htdocs/Chem_Background/ExSumPdf/BisphenolAF_093008_508.pdfGoogle Scholar

  • 17. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 2010;1:146-55. doi: 10.1007/ s12672-010-0015-9CrossrefGoogle Scholar

  • 18. International Agency for Research on Cancer (IARC). International Agency for Research on Cancer, Sex Hormones (II). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Vol. 21. Lyon: IARC; 1979.Google Scholar

  • 19. ChemBio3D Ultra 13.0 [Computer software] in ChemBioOfficeR Ultra 13.0, PerkinElmer, www. cambridgesoft.com/, Release Date: August, 2012.Google Scholar

  • 20. Ashby J, Tennant RW. Chemical-structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the United-States NCI/NTP. Mutat Res 1988;204:17-115.Google Scholar

  • 21. Schweikl H, Schmalz G, Rackebrandt K. The mutagenic activity of unpolymerized resin monomers in Salmonella typhimurium and V79 cells. Mutat Res 1998;415:119-30.Google Scholar

  • 22. Tsutsui T, Tamura Y, Yagi E, Hasegawa K, Takahashi M, Maizumi N, Yamaguchi F, Barrett JC. Bisphenol-A induces cellular transformation, aneuploidy and DNA adduct formation in cultured Syrian hamster embryo cells. Int J Cancer 1998;75:290-4. doi: 10.1002/(SICI)1097-0215(19980119)75:2<290::AID-IJC19>3.0.CO;2-HCrossrefGoogle Scholar

  • 23. Ivett JL, Brown BM, Rodgers C, Anderson BE, Resnick MA, Zeiger E. Chromosomal aberrations and sister chromatid exchange tests in Chinese hamster ovary cells in vitro. IV. Results with 15 chemicals. Environ Mol Mutagen 1989;14:165-87. doi: 10.1002/em.2850140306CrossrefGoogle Scholar

  • 24. Naik P, Vijayaaxmi KK. Cytogenetic evaluation for genotoxicity of Bisphenol-A in bone marrow cells of Swiss albino mice. Mutat Res 2009;676:106-12. doi: 10.1016/ j.mrgentox.2009.04.010CrossrefGoogle Scholar

  • 25. Atkinson A, Roy D. In vitro conversion of environmental estrogenic chemical bisphenol A to DNA binding metabolite(s). Biochem Biophys Res Commun 1995;210:424-33.Google Scholar

  • 26. Edmonds JS, Nomachi M, Terasaki M, Morita M, Skelton BW, White AH. The reaction of bisphenol A 3,4-quinone with DNA. Biochem Biophys Res Commun 2004;319:556-61. doi: 10.1016/j.bbrc.2004.05.024CrossrefGoogle Scholar

  • 27. Atkinson A, Roy D. In vivo DNA adduct formation by bisphenol A. Environ Mol Mutagen 1995;26:60-6. doi: 10.1002/em.2850260109CrossrefPubMedGoogle Scholar

  • 28. Izzotti A, Kanitz S, D’Agostini F, Camoirano A, De Flora S. Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat Res 2009;679:28-32. doi: 10.1016/j. mrgentox.2009.07.011CrossrefGoogle Scholar

  • 29. Iso T, Watanabe T, Iwamoto T, Shimamoto A, Furuichi Y. DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biol Pharm Bull 2006;29:206-10. doi:10.1248/bpb.29.206PubMedCrossrefGoogle Scholar

  • 30. Cabaton N, Dumont C, Severin I, Perdu E, Zalko D, Cherkaoui-Malki M, Chagnon MC. Genotoxic and endocrine activities of bis(hydroxyphenyl)methane (bisphenol F) and its derivatives in the HepG2 cell line. Toxicology 2009;255:15-24. doi: 10.1016/j.tox.2008.09.024CrossrefGoogle Scholar

  • 31. Audebert M, Dolo L, Perdu E, Cravedi JP, Zalko D. Use of the gamma H2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Arch Toxicol 2011;85:1463-73. doi: 10.1007/s00204-011-0721-2CrossrefGoogle Scholar

  • 32. Pfeiffer E, Rosenberg B, Deuschel S, Metzler M. Interference with microtubules and induction of micronuclei in vitro by various bisphenols. Mutat Res 1997;390:21-31.Google Scholar

  • 33. Kanai H, Barrett JC, Metzler M, Tsutsui T. Cell-transforming activity and estrogenicity of bisphenol-A and 4 of its analogs in mammalian cells. Int J Cancer 2001;93:20-5. doi: 10.1002/ ijc.1303CrossrefGoogle Scholar

  • 34. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res 1983;113:173-215.Google Scholar

  • 35. Kenyon MO, Cheung JR, Dobo KL, Ku WW. An evaluation of the sensitivity of the Ames assay to discern low-level mutagenic impurities. Regul Toxicol Pharmacol 2007;48:75-86. doi: 10.1016/j.yrtph.2007.01.006CrossrefGoogle Scholar

  • 36. Westerink WM, Schoonen WG. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro 2007;21:1592-602. doi: 10.1016/j.tiv.2007.06.017CrossrefGoogle Scholar

  • 37. Westerink WM, Schoonen WG. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro 2007;21:1581-91. doi: 10.1016/j.tiv.2007.05.014Google Scholar

  • 38. Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos 2003;31:1035-42. doi: 10.1124/dmd.31.8.1035CrossrefGoogle Scholar

  • 39. Hreljac I, Filipič M. Organophosphorus pesticides enhance the genotoxicity of benzo(a)pyrene by modulating its metabolism. Mutat Res 2009;671:84-92. doi: 10.1016/j. mrfmmm.2009.09.011CrossrefGoogle Scholar

  • 40. Knasmuller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 1998;402:185-202.Google Scholar

  • 41. Solakidi S, Psarra AMG, Sekeris CE. Differential subcellular distribution of estrogen receptor isoforms: Localization of ERα in the nucleoli and ERβ in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines. Biochim Biophys Acta - Mol Cell Res 2005;1745:382-92. doi: 10.1016/j.bbamcr.2005.05.010CrossrefGoogle Scholar

  • 42. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 1983;65:55-63. doi: 10.1016/0022-1759(83)90303-4CrossrefGoogle Scholar

  • 43. Žegura B, Zajc I, Lah TT, Filipič M. Patterns of microcystin- LR induced alteration of the expression of genes involved in response to DNA damage and apoptosis. Toxicon 2008;51:615-23. doi: 10.1016/j.toxicon.2007.11.009CrossrefPubMedGoogle Scholar

  • 44. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184-91.Google Scholar

  • 45. Žegura B, Filipič M. Application of in vitro comet assay for genotoxicity testing. In: Yan Z, Caldwell G, editors. Optimization in drug discovery: In vitro methods. Totowa (NJ): Humana Press; 2004. p. 301-13.Google Scholar

  • 46. Tiwari D, Kamble J, Chilgunde S, Patil P, Maru G, Kawle D, Bhartiya U, Joseph L, Vanage G. Clastogenic and mutagenic effects of bisphenol A: an endocrine disruptor. Mutat Res 2012;743:83-90. doi: doi: 10.1016/j. mrgentox.2011.12.023CrossrefGoogle Scholar

  • 47. Yamaguchi T, Yamauchi A, Yamazaki H, Kakiuchi Y. Mutagenicity of rubber additives in tire. Eisei Kagaku 1991;37:6-13.CrossrefGoogle Scholar

  • 48. Japan Chemical Industry Ecology-Toxicology & Information Center (JETOC). Mutagenicity Test Data of Existing Chemical Substances Based on the Toxicity Investigation System of the Industrial Safety and Health Law (I). Tokyo: JETOC; 1996.Google Scholar

  • 49. National Institute of Environmental Health Sciences (NIH). National Toxicology Program. 2001. National Toxicology Program’s Report of the Endocrine Disruptors Low-Dose Peer Review [displayed 20 Dec 2011]. Available at www. epa.gov/endo/pubs/edmvs/lowdosepeerfinalrpt.pdfGoogle Scholar

  • 50. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 2007;24:199-224.CrossrefGoogle Scholar

  • 51. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000;35:206-21.CrossrefGoogle Scholar

  • 52. Collins AR, Dobson VL, Dušinska M, Kennedy G, Štetina R. The comet assay: what can it really tell us? Mutat Res 1997;375:183-93.Google Scholar

  • 53. Iso T, Futami K, Iwamoto T, Furuichi Y. Modulation of the expression of Bloom helicase by estrogenic agents. Biol Pharm Bull 2007;30:266-71. doi: 10.1248/bpb.30.266CrossrefGoogle Scholar

  • 54. Cavalieri EL, Rogan EG. Is Bisphenol A a weak carcinogen like the natural estrogens and diethylstilbestrol? IUBMB Life 2010;62:746-51. doi: 10.1002/iub.376CrossrefGoogle Scholar

  • 55. Schmidt J, Kotnik P, Trontelj J, Knez Z, Mašič LP. Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes. Toxicol In Vitro 2013;27:1267-76. doi: 10.1016/j.tiv.2013.02.016CrossrefGoogle Scholar

  • 56. Jaeg JP, Perdu E, Dolo L, Debrauwer L, Cravedi JP, Zalko D. Characterization of new bisphenol a metabolites produced by CD1 mice liver microsomes and S9 fractions. J Agric Food Chem 2004;52:4935-42. doi: 10.1021/jf049762uGoogle Scholar

  • 57. Nakagawa Y, Suzuki T. Metabolism of bisphenol A in isolated rat hepatocytes and oestrogenic activity of a hydroxylated metabolite in MCF-7 human breast cancer cells. Xenobiotica 2001;31:113-23.CrossrefGoogle Scholar

  • 58. Kolšek K, Mavri J, Sollner Dolenc M. Reactivity of bisphenol A-3,4-quinone with DNA. A quantum chemical study. Toxicol in Vitro 2012;26:102-6. doi: 10.1016/j. tiv.2011.11.003CrossrefGoogle Scholar

  • 59. Sakuma S, Nakanishi M, Morinaga K, Fujitake M, Wada S, Fujimoto Y. Bisphenol A 3,4-quinone induces the conversion of xanthine dehydrogenase into oxidase in vitro. Food Chem Toxicol 2010;48:2217-22. doi: 10.1016/j.fct.2010.05.051CrossrefGoogle Scholar

  • 60. Bursztyka J, Perdu E, Pettersson K, Pongratz I, Fernandez- Cabrera M, Olea N, Debrauwer L, Zalko D, Cravedi JP. Biotransformation of genistein and bisphenol A in cell lines used for screening endocrine disruptors. Toxicol in Vitro 2008;22:1595-604. doi: 10.1016/j.tiv.2008.06.013PubMedCrossrefGoogle Scholar

  • 61. Tu T, Giblin D, Gross mL. Structural determinant of chemical reactivity and potential health effects of quinones from natural products. Chem Res Toxicol 2011;24:1527-39. doi: 10.1021/tx200140sCrossrefPubMedGoogle Scholar

About the article

Published Online: 2013-07-02

Published in Print: 2013-06-01


Citation Information: Archives of Industrial Hygiene and Toxicology, ISSN (Print) 0004-1254, DOI: https://doi.org/10.2478/10004-1254-64-2013-2319.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
John Moreman, Okhyun Lee, Maciej Trznadel, Arthur David, Tetsuhiro Kudoh, and Charles R. Tyler
Environmental Science & Technology, 2017
[2]
Fei Zhao, Guobin Jiang, Penghao Wei, Hongfang Wang, and Shaoguo Ru
Ecotoxicology and Environmental Safety, 2018, Volume 147, Page 794
[3]
Edna Ribeiro, Carina Ladeira, and Susana Viegas
Toxics, 2017, Volume 5, Number 3, Page 22
[4]
Natalie R. Gassman
Environmental and Molecular Mutagenesis, 2017, Volume 58, Number 2, Page 60
[5]
Shuk-Mei Ho, Rahul Rao, Sarah To, Emma Schoch, and Pheruza Tarapore
Endocrine-Related Cancer, 2017, Volume 24, Number 2, Page 83
[6]
Katarzyna Mokra, Agnieszka Kuźmińska-Surowaniec, Katarzyna Woźniak, and Jaromir Michałowicz
Food and Chemical Toxicology, 2017, Volume 100, Page 62
[7]
Iman Al-Saleh, Rola Elkhatib, Tahreer Al-Rajoudi, and Ghofran Al-Qudaihi
Science of The Total Environment, 2017, Volume 578, Page 440
[8]
Shenxuan Liang, Lei Yin, Kevin Shengyang Yu, Marie-Claude Hofmann, and Xiaozhong Yu
Toxicological Sciences, 2017, Volume 155, Number 1, Page 43
[9]
Darja Gramec Skledar and Lucija Peterlin Mašič
Environmental Toxicology and Pharmacology, 2016, Volume 47, Page 182
[10]
Afia Usman and Masood Ahmad
Chemosphere, 2016, Volume 158, Page 131
[11]
Suzana Žunec, Vilena Kašuba, Ivan Pavičić, Ana Marija Marjanović, Blanka Tariba, Mirta Milić, Nevenka Kopjar, Alica Pizent, Ana Lucić Vrdoljak, Ružica Rozgaj, and Davor Želježić
Food and Chemical Toxicology, 2016, Volume 94, Page 64
[13]
Da Chen, Kurunthachalam Kannan, Hongli Tan, Zhengui Zheng, Yong-Lai Feng, Yan Wu, and Margaret Widelka
Environmental Science & Technology, 2016, Volume 50, Number 11, Page 5438
[14]
Hizb Ullah, Sarwat Jahan, Qurat Ul Ain, Ghazala Shaheen, and Nida Ahsan
Chemosphere, 2016, Volume 152, Page 383
[15]
Bingli Lei, Jie Xu, Wei Peng, Yu Wen, Xiangying Zeng, Zhiqiang Yu, Yipei Wang, and Tian Chen
Environmental Toxicology, 2017, Volume 32, Number 1, Page 278
[16]
Guergana Mileva, Stephanie Baker, Anne Konkle, and Catherine Bielajew
International Journal of Environmental Research and Public Health, 2014, Volume 11, Number 7, Page 7537

Comments (0)

Please log in or register to comment.
Log in