Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

4 Issues per year


IMPACT FACTOR 2016: 1.395

CiteScore 2016: 1.25

SCImago Journal Rank (SJR) 2016: 0.404
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Open Access
Online
ISSN
0004-1254
See all formats and pricing
More options …
Volume 64, Issue 3 (Sep 2013)

Issues

Anticancer and Antioxidant Properties of Terpinolene in Rat Brain Cells

Elanur Aydin / Hasan Türkez
  • Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Şener Taşdemir
Published Online: 2013-10-01 | DOI: https://doi.org/10.2478/10004-1254-64-2013-2365

Abstract

Terpinolene (TPO) is a natural monoterpene present in essential oils of many aromatic plant species. Although various biological activities of TPO have been demonstrated, its neurotoxicity has never been explored. In this in vitro study we investigated TPO’s antiproliferative and/or cytotoxic properties using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) test, genotoxic damage potential using the single-cell gel electrophoresis (SCGE), and oxidative effects through total antioxidant capacity (TAC) and total oxidative stress (TOS) in cultured primary rat neurons and N2a neuroblastoma cells. Dose-dependent effects of TPO (at 10 mg L-1, 25 mg L-1, 50 mg L-1, 100 mg L-1, 200 mg L-1, and 400 mg L-1) were tested in both cell types. Significant (P<0.05) decrease in cell proliferation were observed in cultured primary rat neurons starting with the dose of 100 mg L-1 and in N2a neuroblastoma cells starting with 50 mg L-1. TPO was not genotoxic in either cell type. In addition, TPO treatment at 10 mg L-1, 25 mg L-1, and 50 mg L-1 increased TAC in primary rat neurons, but not in N2a cells. However, at concentrations above 50 mg L-1 it increased TOS in both cell types. Our findings clearly demonstrate that TPO is a potent antiproliferative agent for brain tumour cells and may have potential as an anticancer agent, which needs to be further studied.

Sažetak

PROTUTUMORSKA I ANTIOKSIDATIVNA SVOJSTVA TERPINOLENA U MOŽDANIH STANICA ŠTAKORA

Terpinolen (TPO) prirodni je monoterpen prisutan u esencijalnim uljima mnogih aromatskih biljaka. Premda su otprije poznate razne biološke aktivnosti TPO-a, dosad nije ispitana njegova neurotoksičnost. Svrha je ovog istraživanja in vitro bila utvrditi antiproliferacijska i/ili citotoksična svojstva TPO-a pomoću testa 3-(4,5-dimetiltiazol-2-yl)-2,5 difeniltetrazolijeva bromida (MTT), njegov genotoksični potencijal pomoću komet-testa te oksidativno djelovanje kroz ukupni antioksidativni kapacitet i ukupni oksidativni stres u uzgojenim primarnim neuronima štakora i N2a stanicama neuroblastoma. U objema staničnim linijama ispitani su učinci TPO-a u skladu sa sljedećim dozama: 10 mg L-1, 25 mg L-1, 50 mg L-1, 100 mg L-1, 200 mg L-1 i 400 mg L-1. Značajni (p<0.05) pad stanične proliferacije u primarnim neuronima štakora zamijećen je pri dozama od 100 mg L-1 naviše, a u N2a stanicama neuroblastoma pri dozama od 50 mg L-1 naviše. Niti u jednoj staničnoj liniji TPO se nije pokazao genotoksičnim. Usto se primjenom TPO-a pri dozama od 10 mg L-1, 25 mg L-1 i 50 mg L-1 povećao ukupni antioksidativni kapacitet primarnih štakorskih neurona, ali je takvo djelovanje izostalo u N2a stanica. Međutim, pri koncentracijama višim od 50 mg L-1 TPO je povećao ukupni oksidativni stres u objema staničnim linijama. Naši rezultati nedvojbeno pokazuju da je TPO snažan antiproliferacijski agens u tumorskih stanica mozga, a njegovu potencijalnu ulogu kao protutumorskog lijeka trebalo bi dalje istraživati.

Keywords : antiproliferative agent; comet assay; MTT assay; neurotoxicity; N2a neuroblastoma cell line; oxidative status

KLJUČNE RIJEČI : antiproliferacijski agens; komet test; MTT; neurotoksičnost; N2a stanice; neuroblastom; oksidacijski status

  • 1. Maidment SL, Pilkington GJ. Brain Cancers. In: Encyclopaedia of Life Sciences. Nature Publishing Group/MacMillan 2001, (Invited Reference Work for Electronic Publication) doi: 10.1038/npg.els.0001892CrossrefGoogle Scholar

  • 2. Clarke MF. Neurobiology: At the root of brain cancer. Nature 2004;432:281-2. doi:10.1038/432281aCrossrefGoogle Scholar

  • 3. Maris JM, Matthay KK. Molecular biology of neuroblastoma. J Clin Oncol 1999;17:2264-79. PMID: 10561284Google Scholar

  • 4. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003;3:203-16. PMID: 12612655Google Scholar

  • 5. Heck JE, Ritz B, Hung RJ, Hashibe M, Boffetta P. The epidemiology of neuroblastoma: a review. Paediatr Perinat Epidemiol 2009;23:125-43. doi: 10.1111/j.1365-3016.2008.00983.xCrossrefGoogle Scholar

  • 6. Mueller WP, Coppenrath E, Pfluger T. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr Radiol 2013;43:418-27. doi: 10.1007/s00247-012-2512-1CrossrefGoogle Scholar

  • 7. Kang J, Kamal A, Burrows FJ, Evers BM, Chung DH. Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors. Anticancer Res 2006;26:1903-8. PMID: 16827123Google Scholar

  • 8. Bayrak O, Seckiner I, Erturhan S, Aydin A, Yagci F. Adult intrarenal neuroblastoma presenting as renal cell carcinoma. Can Urol Assoc J 2012;6:E144-6. doi: 10.5489/cuaj.11119CrossrefGoogle Scholar

  • 9. Tang CK, Hajdu SI. Neuroblastoma in adolescence and adulthood. NY State J Med 1975;75:1434-8. PMID: 1057061Google Scholar

  • 10. Dosik GM, Rodriguez V, Benjamin RS, Bodey GP. Neuroblastoma in the adult: effective combination chemotherapy. Cancer 1978;41:56-63. PMID: 626943Google Scholar

  • 11. Lopez R, Karakousis C, Rao U. Treatment of adult neuroblastoma. Cancer 1980;45:840-4.CrossrefGoogle Scholar

  • 12. Grubb BP, Thant M. Neuroblastoma in an adult. Southern Med J 1984;77:1180-2. PMID: 6484689Google Scholar

  • 13. Aleshire SL, Glick AD, Cruz VE, Bradley CA, Parl FF. Neuroblastoma in adults. Pathologic findings and clinical outcome. Arch Pathol Lab Med 1985;109:352-6. PMID: 3885899Google Scholar

  • 14. Kaye JA, Warhol MJ, Kretschmar C, Landsberg L, Frei E 3rd. Neuroblastoma in adults. Three case reports and a review of the literature. Cancer 1986;58:1149-57. PMID: 3731041Google Scholar

  • 15. Allan SG, Cornbleet MA, Carmicael J, Arnott SJ, Smyth JF. Adult neuroblastoma: report of three cases and review of the literature. Cancer 1986;57:2419-21. PMID: 3697939Google Scholar

  • 16. Prestidge BR, Donaldson SS. Treatment results among adults with childhood tumors: a 20-year experience. Int J Radiat Oncol Biol Phys 1989;17:507-14. PMID: 2550396Google Scholar

  • 17. Cadet JL, Brannock C. Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 1989;32:117-31. PMID: 9542724Google Scholar

  • 18. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem 2006;97:1634-58. doi: 10.1111/ j.1471-4159.2006.03907.xCrossrefGoogle Scholar

  • 19. Mecocci P, Mac Garvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 1994;36:747-51. doi: 10.1002/ana.410360510CrossrefGoogle Scholar

  • 20. Turkez H, Geyikoğlu F, Tatar A, Keleş S, Ozkan A. Effects of some boron compounds on peripheral human blood. Z Naturforsch C 2007;62:889-96. PMID: 18274294Google Scholar

  • 21. Turkez H, Geyikoglu F. The effect of laurel leaf extract against toxicity induced by 2,3,7,8-tetrachlorodibenzo-pdioxin in cultured rat hepatocytes. Arh Hig Rada Toksikol 2011;62:309-15. doi: 10.2478/10004-1254-62-2011-2118CrossrefGoogle Scholar

  • 22. Turkez H, Aydin E. Anti-genotoxic role of eicosapentaenoic acid against imazalil-induced DNA damage in vitro. Toxicol Ind Health 2012 Feb 8. [Epub ahead of print] doi: 10.1177/0748233711433943CrossrefGoogle Scholar

  • 23. Turkez H, Geyikoğlu F, Dirican E, Tatar A. In vitro studies on chemoprotective effect of borax against aflatoxin B1- induced genetic damage in human lymphocytes. Cytotechnology 2012;64:607-12. doi: 10.1007/s10616-012-9454-1CrossrefGoogle Scholar

  • 24. Turkez H, Aydin E. The effects of taurine on permethrin induced cytogenetic and oxidative damage in cultured human lymphocytes. Arh Hig Rada Toksikol 2012;63:27-34. doi: 10.2478/10004-1254-63-2012-2114CrossrefGoogle Scholar

  • 25. Shon MY, Choi SD, Kahng GG, Nam SH, Sung NJ. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem Toxicol 2004;42:659-66. PMID: 15019191Google Scholar

  • 26. Sevgiler Y, Karaytug S, Karayakar F. Antioxidative effects of N-acetylcysteine, lipoic acid, taurine, and curcumin in the muscle of Cyprinus carpio L. exposed to cadmium. Arh Hig Rada Toksikol 2011;62:1-9. doi: 10.2478/10004-1254-62-2011-2082CrossrefGoogle Scholar

  • 27. Charles DJ, Simon JE. Comparison of extraction methods for the rapid determination of essential oil content and composition of basil. J Am Soc Hort Sci 1990;115:458-62.Google Scholar

  • 28. Loza-Tavera H. Monoterpenes in essential oils. Biosynthesis and properties. Adv Exp Med Biol 1999;464:49-62. PMID: 10335385Google Scholar

  • 29. Carnesecchi S, Schneider Y, Ceraline J, Duranton B, Gosse F, Seiler N, Raul F. Geraniol, a component of plant essential oils, inhibits growth and polyamine biosynthesis in human colon cancer cells. J Pharmacol Exp Ther 2001;298:197-200. PMID: 11408542Google Scholar

  • 30. Southwell IA, Stiff IA, Brophy JJ. Terpinolene varieties of Melaleuca. J Essent Oil Res 1992;4:363-7. doi: 10.1080/10 412905.1992.9698086CrossrefGoogle Scholar

  • 31. Burdock GA. Fenaroli’s Hanbook of Flavor Ingredients: Adapted from the Italian Language Works of Giovanni Fenaroli. 3rd ed. Boca Raton: CRC Press; 1995.Google Scholar

  • 32. Brauss MS, Linforth RST, Cayeux I, Harvey B, Taylor AJ. Altering the fat content affects fl avor release in a model yogurt system. J Agric Food Chem 1999;47:2055-9. PMID: 10552495Google Scholar

  • 33. Harada T, Harada E, Sakamoto R, Ashitani T, Fujita K, Kuroda K. Regio- and substrate-specific oxidative metabolism of terpinolene by cytochrome P450 monooxygenases in Cupressus lusitanica cultured cells. Am J Plant Sci 2012;3:268-75. doi: 10.4236/ajps.2012.32032CrossrefGoogle Scholar

  • 34. Dorman HJD, Figueiredo AC, Barroso JG, Deans SG. Invitro evaluation of antioxidant activity of essential oils and their components. Flavour Fragr J 2000;15:12-6. CrossrefGoogle Scholar

  • 35. Hammer KA, Carson CF, Riley TV. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomycescerevisiae. J Antimicrob Chemother 2004;53:1081-5. doi: 10.1093/jac/dkh243CrossrefGoogle Scholar

  • 36. Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A. Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 2012;110:2013-21. doi: 10.1007/s00436-011-2730-8CrossrefGoogle Scholar

  • 37. Arunasree KM. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine 2010;17:581-8. doi: 10.1016/j. phymed.2009.12.008CrossrefGoogle Scholar

  • 38. Wang W, Li N, Luo M, Zu Y, Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 2012;17:2704-13. doi: 10.3390/molecules17032704CrossrefGoogle Scholar

  • 39. Anonymous. National Institute of Health, Principles of Laboratory Animal Care, USA. 1985;23:1-112.Google Scholar

  • 40. Daikhin Y, Yudkoff M. Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 2000;130(4S Suppl):1026S-31S. PMID: 10736375Google Scholar

  • 41. Zhou JY, Tang FD, Mao GG, Bian RL. Effect of alpha-pinene on nuclear translocation of NF-kappa B in THP-1 cells. Acta Pharmacol Sin 2004;25:480-4. PMID: 15066217Google Scholar

  • 42. Yu Z, Wang W, Xu L, Dong J, Jing Y. d-Limonene and dcarvone induce apoptosis in HL-60 cells through activation of caspase-8. Asian J Trad Med 2008;3:134-43.Google Scholar

  • 43. Buyukleyla M, Rencuzogullari E. The effects of thymol on sister chromatid exchange, chromosome aberration and micronucleus in human lymphocytes. Ecotoxicol Environ Saf 2009;72:943-7. doi: 10.1016/j.ecoenv.2008.10.005CrossrefGoogle Scholar

  • 44. Aristatile B, Al-Numair KS, Al-Assaf AH, Pugalendi KV. Pharmacological effect of carvacrol on D: -galactosamineinduced mitochondrial enzymes and DNA damage by singlecell gel electrophoresis J Nat Med 2011;65:568-77. doi: 10.1007/s11418-011-0544-8CrossrefGoogle Scholar

  • 45. Singh DK, Lippman SM. Cancer chemoprevention part 1: retinoids and carotenoids and other classic antioxidants. Oncology 1998;12:1643-60. PMID: 9834941Google Scholar

  • 46. Kizilian N, Wilkins RC, Reinhardt P, Ferrarotto C, McLean JR, McNamee JP. Silver stained comet assay for detection of apoptosis. Biotechniques 1999;27:926-30. PMID: 10572638Google Scholar

  • 47. Tice RR, Agurell E, Anderson D. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000;35:206-21. PMID: 10737956Google Scholar

  • 48. Saleha Banu B, Dana Devi K, Mahboob M. In vivo genotoxic effect of zinc sulfate in mouse peripheral blood leukocytes using comet assay. Drug Chem Toxicol 2000;24:63-73. doi: 10.1081/DCT-100103086CrossrefGoogle Scholar

  • 49. Heaton PR, Ransley R, Charlton CJ. Application of single-cell gel electrophoresis (comet) assay for assessing levels of DNA damage in canine and feline leukocytes. J Nutr 2002;132(6 Suppl 2):1598S-603S. PMID: 12042468Google Scholar

  • 50. Das GP, Shaik AP, Jamil K. Cytotoxicity and genotoxicity induced by the pesticide profenofos on cultured human peripheral blood lymphocytes. Drug Chem Toxicol 2006;29:313-22. doi: 10.1080/01480540600653093CrossrefGoogle Scholar

  • 51. Turkez H. The role of ascorbic acid on titanium dioxideinduced genetic damage assessed by the comet assay and cytogenetic tests. Exp Toxicol Pathol 2011;63:453-7. doi: 10.1016/j.etp.2010.03.004CrossrefGoogle Scholar

  • 52. Todoriki S, Hasan M, Miyanoshita A, Imamura T, Hayashi T. Assessment of electron beam-induced DNA damage in larvae of chestnut weevil, Curculio sikkimensis (Heller) (Coleoptera: Curculionidae) using comet assay. Radiat Physic C h e m 7 5 ; 2 0 0 6 : 2 9 2 - 6 . d o i : 1 0 . 1 0 1 6 / j . radphyschem.2005.08.001Google Scholar

  • 53. Aydın E, Turkez H, Keleş MS. The effect of carvacrol on healthy neurons and N2a cancer cells: some biochemical, anticancerogenicity and genotoxicity studies. Cytotechnology 2013; (in press) doi: 10.1007/s10616-013-9547-5.CrossrefGoogle Scholar

  • 54. Kusano C, Ferrari B. Total antioxidant capacity: a biomarker in biomedical and nutritional studies. J Cell Mol Biol 2008;7:1-15.Google Scholar

  • 55. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 2004;37:112-9. doi: 10.1016/j. clinbiochem.2003.10.014CrossrefGoogle Scholar

  • 56. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005;38:1103-11. doi: 10.1016/j.clinbiochem.2005.08.008CrossrefGoogle Scholar

  • 57. Falk AA, Hagberg MT, Lof AE, Wigaeus-Hjelm EM, Zhiping W. Uptake, distribution and elimination of alpha-pinene in man after exposure by inhalation. Scand J Work Environ Health 1990;16:372-8. doi: 10.5271/sjweh.1771CrossrefGoogle Scholar

  • 58. Igimi H, Nishimura M. Studies on the metabolism of d-limonene (p-Mentha-1,8-diene). I. The absorption, distribution, and excretion of d-limonene in rats. Xenobiotica 1974;4:77-84. doi: 10.3109/00498257409049347CrossrefGoogle Scholar

  • 59. Foley WJ, Lassak EV, Brophy J. Digestion and absorption of Eucalyptus essential oils in greater glider (Petauroidesvolans) and brushtail possums (Trichosurus vulpecula). J Chem Ecol 1987;13:2115-30. doi: 10.1007/BF01012875CrossrefGoogle Scholar

  • 60. Boyle R, McLean S, Foley WJ, Davies NW. Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials. J Chem Ecol 1999;25:2109-27. doi: 10.1023/A:1021092908058CrossrefGoogle Scholar

  • 61. Boyle R, McLean S, Davies NW. Biotransformation of 1,8-cineole in the brushtail possum (Trichosurus vulpecula). Xenobiotica 2000;30:915-32. PMID: 11055269Google Scholar

  • 62. Crowell PL. Prevention and therapy of cancer by dietary monoterpenes. J Nutr 1999;129:775S-8S. PMID: 10082788Google Scholar

  • 63. Crowell PL, Lin S, Vedejs E, Gould MN. Identification of metabolites of the antitumor agent d-limonene capable of inhibiting protein isoprenylation and cell growth. Cancer Chemother Pharmacol 1992;31:205-12. doi: 10.1007/ BF00685549CrossrefGoogle Scholar

  • 64. Crowell PL, Ren Z, Lin S, Vedejs E, Gould MN. Structureactivity relationships among monoterpene inhibitors of protein isoprenylation and cell proliferation. Biochem Pharmacol 1994;47:1405-15. doi: 10.1016/0006-2952(94)90341-7CrossrefGoogle Scholar

  • 65. Kodama R, Yano T, Furukawa K, Noda K, Ide H. Studies on the metabolism of d-limonene (p-mentha-1,8-diene). IV: Isolation and characterization of new metabolites and species differences in metabolism. Xenobiotica 1976;6:377-89. doi: 10.3109/00498257609151649CrossrefGoogle Scholar

  • 66. Regan JW, Bjeldanes LF. Metabolism of (+)-limonene in rats. J Agric Food Chem 1976;24:377-80. doi: 10.1021/ jf60204a031CrossrefGoogle Scholar

  • 67. Yeruva L, Pierre KJ, Elegbede A, Wang RC, Carper SW. Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells. Cancer Letters 2007;257:216-26. doi: 10.1016/j.canlet.2007.07.020CrossrefGoogle Scholar

  • 68. Pratheeshkumar P, Raphael TJ, Kuttan G. Protective role of perillic acid against radiation-induced oxidative stress, cytokine profile, DNA damage, and intestinal toxicity in mice. J Environ Pathol Toxicol Oncol 2010;29:199-212. PMID: 21303327Google Scholar

  • 69. Ma Y, Marston G. Formation of organic acids from the gasphase ozonolysis of terpinolene. Phys Chem Chem Phys 2009;11:4198-209. doi: 10.1039/B818789DCrossrefGoogle Scholar

  • 70. Okumura N, Yoshida H, Nishimura Y, Kitagishi Y, Matsuda S. Terpinolene, a component of herbal sage, downregulates AKT1 expressionin K562 cells. Oncol Lett 2012;3:321-4. doi: 10.3892/ol.2011.491CrossrefGoogle Scholar

  • 71. Silva SL, Figueiredo PM, Yano T. Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. leaves. Acta Amaz 2007;37:281-6. doi: 10.1590/S0044-59672007000200015CrossrefGoogle Scholar

  • 72. Rabi T, Bishayee A. d-Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: Generation of reactive oxygen species and induction of apoptosis. J Carcinog 2009;8:9. doi: 10.4103/1477-3163.51368CrossrefGoogle Scholar

  • 73. Rassouli FB, Matin MM, Iranshahi M, Bahrami AR. Investigating the cytotoxic and apoptosis inducing effects of monoterpenoid stylosin in vitro. Fitoterapia 2011;82:742-9. doi: 10.1016/j.fitote.2011.03.005CrossrefGoogle Scholar

  • 74. Chen F, Kim HJ, Wang X, Wu C, Chung HY, Jin Z. Evaluation of antioxidant and antiproliferative activities of tea tree (Melaleuca alternifolia) oil. In: IFT Annual Meeting; 12-16 July 2004. Las Vegas, Nevada, USA.Google Scholar

  • 75. Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Scutti JAB, Massaoka MH, Travassos LR, Sartorelli P, Lago JHG. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem Biophys Res Commun 2011 ; 4 11 : 4 4 9 - 5 4 . d o i : 1 0 . 1 0 1 6 / j . bbrc.2011.06.176Google Scholar

  • 76. Constantinou A, Mehta R, Runyan C, Rao K, Vaughan A, Moon R. Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J Nat Prod 1995;58:217-25. doi: 10.1021/np50116a009CrossrefGoogle Scholar

  • 77. Lepley DM, Li B, Birt DF, Pelling JC. The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis 1996;17:2367-75. PMID: 8968050Google Scholar

  • 78. Plaumann B, Fritsche M, Rimpler H, Brandner G, Hess RD.PubMedGoogle Scholar

  • Flavonoids activate wild-type p53. Oncogene 1996;13:1605-14. PMID: 8895505Google Scholar

  • 79. Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Remesy C, Chap H, Payrastre B. Relationship between fl avonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol 1997;53:1649-57. doi: 10.1016/S0006-2952(97)82453-7CrossrefGoogle Scholar

  • 80. Chen ZP, Schell JB, Ho CT, Chen KY. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 1998;129:173-9. doi: 10.1016/ S0304-3835(98)00108-6CrossrefGoogle Scholar

  • 81. Kazi A, Wang Z, Kumar N, Falsetti SC, Chan TH, Dou QP. Structure activity relationships of synthetic analogs of (−)- epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res 2004;24:943-54. PMID: 15161048Google Scholar

  • 82. Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 2005;69:1421-32. doi: 10.1016/j. bcp.2005.02.022CrossrefGoogle Scholar

  • 83. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV. Induction of cancer cell apoptosis by fl avonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 2005;280:5636-45. doi: 10.1074/jbc.M408177200CrossrefGoogle Scholar

  • 84. Turner SD, Tinwell H, Piegorsch W, Schmezer P, Ashby J. The male rat carcinogens limonene and sodium saccharin are not mutagenic to male Big Blue rats. Mutagenesis 2001;16:329-32. doi: doi: 10.1093/mutage/16.4.329CrossrefGoogle Scholar

  • 85. Slamenova D, Horvathova E, Sramkova M, Marsalkova L. DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured invitro. Neoplasma 2007;54:108-12. PMID: 17319782Google Scholar

  • 86. Gomes-Carneiro MR, Viana ME, Felzenszwalb I, Paumgartten FJ. Evaluation of beta-myrcene, alpha-terpinene and (+)- and (-)-alpha-pinene in the Salmonella/microsome assay. Food Chem Toxicol 2005;43:247-52. doi: 10.1016/j. fct.2004.09.011CrossrefGoogle Scholar

  • 87. Horvath GY, Kocsis B, Botz L, Nemeth J, Hungarian LGy. Antibacterial activity of Thymus phenols by direct bioautography. Acta Biol Szegediensis 2002:46(3-4):145-6.Google Scholar

  • 88. Mademtzoglou D, Akmoutsou P, Kounatidis I, Franzios G, Drosopoulou E, Vokou D, Mavragani-Tsipidou P. Applying the Drosophila wing spot test to assess the genotoxic impact of 10 essential oil constituents used as fl avouring agents or cosmetic ingredients. Flavour Frag J 2011;26:447-51. doi: 10.1002/ffj.2081CrossrefGoogle Scholar

  • 89. National Toxicology Program. NTP toxicology and carcinogenesis studies of d-carvone (CAS No. 2244-16-8) in B6C3F1mice (gavage studies). Natl Toxicol Program Tech Rep 1990;381:1-113. PMID: 12692655Google Scholar

  • 90. Singh NP, McCoy MT, Tice RR. A simple technique for quantitation of low level of DNA damage in individual cells. Exp Cell Res 1998;17:184-91. doi: 10.1016/0014-4827(88)90265-0CrossrefGoogle Scholar

  • 91. Ravizza R, Gariboldi MB, Molteni R, Monti E. Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells. Oncol Rep 2008;20:625-30. PMID: 18695915Google Scholar

  • 92. Hari Babu L, Perumal S, Balasubramanian MP. Myrtenal, a natural monoterpene, down-regulates TNF-α expression and suppresses carcinogen-induced hepatocellular carcinoma in rats. Mol Cell Biochem 2012;369:183-93. doi: 10.1007/ s11010-012-1381-0CrossrefGoogle Scholar

  • 93. Soares PR, de Oliveira PL, de Oliveira CM, Kato L, Guillo LA. In vitro antiproliferative effects of the indole alkaloid vallesiachotamine on human melanoma cells. Arch Pharm Res 2012;35:565-71. doi: 10.1007/s12272-012-0320-7CrossrefGoogle Scholar

  • 94. Kim SH, Park EJ, Lee CR, Chun JN, Cho NH, Kim IG, Lee S, Kim TW, Park HH, So I, Jeon JH. Geraniol induces cooperative interaction of apoptosis and autophagy to elicit cell death in PC-3 prostate cancer cells. Int J Oncol 2012;40:1683-90. doi: 10.3892/ijo.2011.1318CrossrefGoogle Scholar

  • 95. Wu CS, Chen YJ, Chen JJ, Shieh JJ, Huang CH, Lin PS, Chang GC, Chang JT, Lin CC. Terpinen-4-ol induces apoptosis in human nonsmall cell lung cancer in vitro and invivo. Evid Based Complement Alternat Med 2012;2012:818261. doi: 10.1155/2012/818261CrossrefGoogle Scholar

  • 96. Mohamed AA, El-Emary GA, Ali HF. Infl uence of some citrus essential oils on cell viability, glutathione-S-transferase and lipid peroxidation in Ehrlich ascites carcinoma cells. J Am Sci 2010;6:820-6.Google Scholar

  • 97. Ohgami Y, Elstad CA, Chung E, Shirachi DY, Quock RM, Lai HC. Effect of hyperbaric oxygen on the anticancer effect of artemisinin on molt-4 human leukemia cells. Anticancer Res 2010;30:4467-70. PMID: 21115894Google Scholar

  • 98. Zhou D, Papayannis I, Mackenzie GG, Alston N, Ouyang N, Huang L, Nie T, Wong CC, Rigas B. The anticancer effect of phospho-tyrosol-indomethacin (MPI 621), a novel phospho-derivative of indomethacin: In vitro and in vivo studies. Carcinogenesis 2013;34:943-51. doi: 10.1093/carcin/ bgs394)CrossrefGoogle Scholar

  • 99. Kwan HY, Yang Z, Fong WF, Hu YM, Yu ZL, Hsiao WLW. The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J Gastroenterol 2013;48:182-92. doi: 10.1007/s00535-012-0612-1CrossrefGoogle Scholar

  • 100. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 2004;74:2157-84. doi: 10.1016/j.lfs.2003.09.047CrossrefGoogle Scholar

  • 101. Mates JM, Segura JA, Alonso FJ, Marquez J Natural antioxidants: therapeutic prospects for cancer and neurological diseases. Mini-Rev Med Chem 2009;9:1202-14. doi: 10.21 74/138955709789055180CrossrefGoogle Scholar

  • 102. Singh A, Jain A, Sarma B K, Jha A, Singh HB. Natural antioxidants and their role in cancer prevention. In: Shankar S, Srivastava RK, editors. Nutrition, diet and cancer. Berlin: Springer; 2012. p. 563-83.Google Scholar

  • 103. Bourgou S, Pichette A, Lavoie S, Marzouk B, Legault J. Terpenoids isolated from Tunisian Nigella sativa L. essential oil with antioxidant activity and the ability to inhibit nitric oxide production. Flavour Frag J 2012;27:69-74. doi: 10.1002/ffj.2085CrossrefGoogle Scholar

  • 104. Ruberto G, Baratta MT. Anticancer, antioxidant and antimicrobial activities of the essential oil of Lycopus lucidus Turcz. var. hirtus Regel. Food Chem 2000;69:167-74. doi: 10.1016/j.foodchem.2010.12.027CrossrefGoogle Scholar

  • 105. Kim HJ, Chen F, Wu C, Wang X, Chung HY, Jin Z. Evaluation of antioxidant activity of Australian tea tree (Melaleucaalternifolia) oil and its components. J Agric Food Chem 2004;52:2849-54. doi: 10.1021/jf035377dCrossrefGoogle Scholar

  • 106. Lima CF, Carvalho F, Fernandes E, Bastos ML, Santos- Gomes PC, Fernandes-Ferreira M, Pereira-Wilson C. Evaluation of toxic/protective effects of the essential oil of Salvia officinalis on freshlyisolated rat hepatocytes. Toxicol In Vitro 2004;18:457-65. doi: 10.1016/j.tiv.2004.01.001 CrossrefGoogle Scholar

About the article

Published Online: 2013-10-01

Published in Print: 2013-09-01


Citation Information: Archives of Industrial Hygiene and Toxicology, ISSN (Print) 0004-1254, DOI: https://doi.org/10.2478/10004-1254-64-2013-2365.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in