Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

4 Issues per year


IMPACT FACTOR 2016: 1.395

CiteScore 2016: 1.25

SCImago Journal Rank (SJR) 2016: 0.404
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Open Access
Online
ISSN
0004-1254
See all formats and pricing
More options …
Volume 66, Issue 1 (Mar 2015)

Issues

Atrazine levels in the Jaboticabal water stream (São Paulo State, Brazil) and its toxicological effects on the pacu fish Piaractus mesopotamicus / Razine atrazina u vodotoku Jaboticabal (São Paulo, Brazil) i njihovi toksikološki učinci na ribu Piaractus mesopotamicus

Edson Aparecido dos Santos / Claudinei da Cruz / Silvia Patrícia Carraschi / José Roberto Marques Silva / Rafael Grossi Botelho
  • Corresponding author
  • Centro de Energia Nuclear na Agricultura, Universidade de São Paulo – CENA/USP, Piracicaba-SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edivaldo Domingues Velini / Robinson Antonio Pitelli
Published Online: 2015-03-27 | DOI: https://doi.org/10.1515/aiht-2015-66-257

Abstract

The aim of this study was to determine the environmental concentration of atrazine (ATZ) in five streams located in the north of São Paulo state (Brazil) and evaluate its toxicological impact on young specimens of the pacu fish Piaractus mesopotamicus. Samples of water were collected on three occasions between 2010 and 2011, corresponding to periods signifying the beginning, middle, and end of rain season. ATZ levels were estimated by a high-performance liquid chromatography coupled with a mass spectrometry (HPLC-MS/MS) triple quadrupole. Later, the quotient of environmental risk (QR) was determined based on the medium lethal concentration (LC50 48 h), non-observable effect concentration (NOEC), and the estimated environmental concentration (EEC) of ATZ detected in the environment. Histological changes in gills and liver were also studied, along with the brain activity of the enzyme acetylcholinesterase (AChE). The highest concentration of ATZ measured was 10.4 μg L-1. The ATZ LC50 (48 h) for young P. mesopotamicus was 24.46 mg L-1 and the QR was classified as “safe”. Although the QR indicated that ATZ could be safe for the tested species, it caused many histological alterations in the liver and gills of the exposed specimens, and an increase in the AChE levels.

Predmet ovoga istraživanja bio je odrediti okolišne koncentracije atrazina u pet vodotoka na sjeveru brazilske savezne države São Paulo te ocijeniti njihove toksikološke učinke na ribu Piaractus mesopotamicus. Uzorci vode prikupljeni su u tri navrata između 2010. i 2011. godine, i to na početku, usred i pri kraju kišne sezone. Razine atrazina mjerene su trostrukim kvadrupolom s vezanim sustavom tekućinska kromatografija visoke djelotvornosti-spektrometrija mase (HPLCMS/ MS). Potom je izračunat kvocijent okolišnog rizika (QR) na temelju srednje smrtonosne koncentracije (LC50 48 h), maksimalne koncentracije bez učinka (NOEC) te procijenjene okolišne koncentracije (EEC) atrazina pronađenog u okolišu. Nadalje, istražene su histološke promjene u škrgama i jetri te izmjerena aktivnost enzima acetilkolinesteraze (AChE) u mozgu. Najviša izmjerena razina atrazina bila je 10.4 μg L-1. LC50 (48 h) atrazina za mlade jedinke P. mesopotamicus bio je 24.46 mg L-1, a QR je klasificiran kao „siguran“. Premda QR upućuje na to da bi se atrazin mogao okarakterizirati sigurnim za ispitanu vrstu, uzrokovao je ne samo brojne histološke promjene u jetri i škrgama izloženih jedinki, nego i porast razina AChE u mozgu.

Keywords : AChE; Gesaprim 500; herbicides; histology; HPLC-MS/MS; neotropical fish; toxicity

KLJUČNERIJEČI : AChE; Gesaprim 500; herbicidi; histologija; HPLC-MS/MS; neotropske vrste riba; toksičnost

References

  • 1. Gianessi PL. The increasing importance of herbicides in worldwide crop production. Pest Manag Sci 2013;69:1099-105. doi: 10.1002/ps.3598Web of ScienceCrossrefGoogle Scholar

  • 2. Rodrigues BN, Almeida FS. [Guia de herbicidas, in Portuguese]. Londrina: IAPAR/GTL; 2005.Google Scholar

  • 3. Benvenuto F, Marín JM, Sancho JV, Canobbio S, Mezzanotte V, Hernández F. Simultaneous determination of triazines and their main transformation products in surface and urban wastewater by ultra-high-pressure liquid chromatography- tandem mass spectrometry. Anal Bioanal Chem 2010;397:2791-805. PMID: 20658761Google Scholar

  • 4. García-Galán MJ, Díaz-Cruz MS, Barceló D. Determination of triazines and their metabolites in environmental samples using molecularly imprinted polymer extraction, pressurized liquid extraction and LC-tandem mass spectrometry. J Hydrol 2010;383:30-8. doi: 10.1016/j.jhydrol.2009.09.025CrossrefWeb of ScienceGoogle Scholar

  • 5. Chovanec A, Hofer R, Schiemer F. Fish as bioindicators. In: Markert BA, Breure AM, Zechmeister HG, editors. Bioindicators and biomonitors - principles, concepts and applications. Amsterdam: Elsevier; 2003. p. 639-76.Google Scholar

  • 6. Balen RE, Tetu PN, Bombardelli RA, Pozza PC, Meurer F. Digestible energy of crude glycerol for pacu and silver catfish. Cienc Rural 2014;44:1448-51. doi: http://dx.doi.org/10.1590/0103-8478cr20131426Web of ScienceCrossrefGoogle Scholar

  • 7. Lopes RB, Paraíba LC, Ceccarelli PS, Tornisielo VL. Bioconcentration of trichlorfon insecticide in pacu (Piaractus mesopotamicus). Chemosphere 2006;64:56-62. doi: 10.1016/j.chemosphere.2005.11.029PubMedCrossrefGoogle Scholar

  • 8. Lopes RM, Filho MV, de Salles JB, Bastos VL, Bastos JC. Cholinesterase activity of muscle tissue from freshwater fishes: Characterization and sensitivity analysis to the organophosphate methyl-paraoxon. Environ Toxicol Chem 2014;33:1331-6. doi: 10.1002/etc.2556CrossrefPubMedWeb of ScienceGoogle Scholar

  • 9. Malaqueiro MI, Nakaghi LS, Yamada PK, de Camargo Ferraz G, de Queiroz-Neto A, DeOliveira GH. Degradation, residual determination, and cholinesterase activity of triclorfon in Piaractus mesopotamicus Holmberg (PACU) 1887. J Toxicol Environ Health A 2014; 77:125-32. doi: 10.1080/15287394.2013.866928CrossrefGoogle Scholar

  • 10. Castro MP, de Moraes FR, Fujimoto RY, da Cruz C, Belo MA, de Moraes JR. Acute toxicity by water containing hexavalent or trivalent chromium in native Brazilian fish, Piaractus mesopotamicus: anatomopathological alterations and mortality. Bull Environ Contam Toxicol 2014;92:213-9. doi: 10.1007/s00128-013-1174-5Web of ScienceCrossrefGoogle Scholar

  • 11. European Commission. Commission decision of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance, 2004/248/EC [displayed 10 March 2015]. Available at http://ec.europa.eu/food/plant/protection/evaluation/existactive/oj_atrazine.pdfGoogle Scholar

  • 12. BRASIL. Instituto Brasileiro de Geografia e Estatística. [Censo 2010, Cidades. Lavoura temporária, 2010 in Portuguese] [displayed 15 Jun 2014]. Available at http:// www.ibge.gov.br/cidadesat/Google Scholar

  • 13. Associação Brasileira de Normas Técnicas (ABNT). NBR 15088. Ecotoxicologia aquática - Toxicidade aguda. Método de ensaio com peixes [Aquatic ecotoxicology - acute toxicity. Test method with fish, in Portuguese]. São Paulo: ABNT; 2011.Google Scholar

  • 14. Organisation for Economic Co-operation and Development (OECD). Guidelines for the Testing of Chemicals, Section 2 Effects on Biotic Systems. Test No. 203: Fish, Acute Toxicity Test.Paris: OECD; 1992.Google Scholar

  • 15. Hamilton MA, Russo RC, Thurston V. Trimed Spearman- Karber method for estimating medial lethal concentrations in toxicity bioassays. Environ Sci Technol 1977;11:714-9. doi: 10.1021/es60130a004CrossrefGoogle Scholar

  • 16. Urban DJ, Cook NJ. Hazard Evaluation Division standard evaluation procedure: ecological risk assessment. U.S. EPA Publication 540/9-86-001. Washington (DC): U.S. EPA, Office of Pesticide Programs; 1986.Google Scholar

  • 17. Goktepe I, Portier R, Ahmedna M. Ecological risk assessment of Neem based pesticides. J Environ Sci Health B 2004;39:311-20. doi: 10.1081/PFC-120030244CrossrefPubMedGoogle Scholar

  • 18. Commission of the European Communities (CEC). Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances. Part II, environmental risk assessment. Luxembourg: Office for official publication of the European Communities; 2003.Google Scholar

  • 19. Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95. doi: 10.1016/0006-2952(61)90145-9PubMedCrossrefGoogle Scholar

  • 20. Villescas R, Oswald R, Marimoto H. Effects of neonatal undernutrition and cold stress on behavior and biochemical brain parameters in rats. J Nutr 1981;111:1103-10. PMID: 7241231PubMedGoogle Scholar

  • 21. Hartley HO. Use of range in analysis of variance. Biometrika 1950;37:271-80. doi: 10.1093/biomet/37.3-4.271CrossrefPubMedGoogle Scholar

  • 22. BRASIL. Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente (CONAMA). [Resolução n. 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências, in Portuguese] [displayed 27 May 2014]. Available at http://www.mma.gov.br/port/conama/res/res05/res35705.pdfGoogle Scholar

  • 23. Pissarra TCT, Politano W, Ferraudo AS. [Avaliação de características morfométricas na relação solo-superfície da Bacia Hidrográfica do Córrego Rico, Jaboticabal (SP), in Portuguese]. Rev Bras Ciênc Solo 2004;28:297-305.CrossrefGoogle Scholar

  • 24. Donadio NMM, Galbiatti JA, Paula RC. [Qualidade da água de nascentes com diferentes usos do solo na bacia hidrográfica do Córrego Rico, São Paulo, Brasil, in Portuguese]. Eng Agríc 2005;25:115-25.CrossrefGoogle Scholar

  • 25. Gish TJ, Prueger JH, Daughtry CS, Kustas WP, Mckee LG, Russ AL, Hatfield JL. Comparison of field-scale herbicide runoff and volatilization losses: an eight-year field investigation. J Environ Qual 2011;40:1432-42. doi: 10.2134/ jeq2010.0092CrossrefWeb of SciencePubMedGoogle Scholar

  • 26. Armas ED, Monteiro RTR, Antunes PM, Santos MAPF, Camargo PB, Abakerli RB. [Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do Rio Corumbataí e principais afluentes, in Portuguese]. Quim Nova 2007;30:1119-27. doi: 10.1590/ S0100-40422007000500013CrossrefGoogle Scholar

  • 27. Azevedo DA, Gerchon E, Reis EO. Monitoring of pesticides and polycyclic aromatic hydrocarbons in water from Paraíba do Sul River, Brazilian. J Braz Chem Soc 2004;15:292-9. doi: 10.1590/S0103-50532004000200021CrossrefGoogle Scholar

  • 28. Bortoluzzi EC, Rheinheimer DS, Gonçalves CS, Pellegrini JBR, Maroneze AM, Kurz MHS, Bacar NM, Zanella R. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quím Nova 2007;30:1872-6. doi: 10.1590/S0100-40422007000800014Web of ScienceCrossrefGoogle Scholar

  • 29. Kreutz LC, Barcellos LJG, Silva TO, Anziliero D, Martins D, Lorenson M, Marteninghe A, da Silva LB. Acute toxicity test of agricultural pesticides on silver catfish (Rhamdia quelen) fingerlings. Ciênc Rural 2008;38:1050-5. doi: 10.1590/S0103-84782008000400022Web of ScienceCrossrefGoogle Scholar

  • 30. Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van Der Kraak GJ. Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol 2008;38:721-72. doi: 10.1080/10408440802116496Web of ScienceCrossrefGoogle Scholar

  • 31. Botelho RG, Santos JB, Oliveira TA, Braga RR, Byrro ECM. Toxicidade aguda de herbicidas a tilápia (Oreochromis niloticus) [Acute toxicity to herbicides to Oreochromis niloticus, in Portuguese]. Planta Daninha 2009;27:621-6. doi: 10.1590/S0100-83582009000300024CrossrefGoogle Scholar

  • 32. Saglio P, Trijasse S. Behavioral responses to atrazine and diuron in goldfish. Arch Environ Contam Toxicol 1998;35:484-91. PMID: 9732481PubMedGoogle Scholar

  • 33. Xing H, Wu H, Sun G, Zhang Z, Xu S, Li S. Alterations in activity and mRNA expression of acetylcholinesterase in the liver, kidney and gill of common carp exposed to atrazine and chlorpyrifos. Environ Toxicol Pharmacol 2013;35:47-54. doi: 10.1016/j.etap.2012.11.004CrossrefWeb of ScienceGoogle Scholar

  • 34. Botelho RG, Rossi ML, Maranho LA, Olinda RA, Tornisielo VL. Evaluation of surface water quality using an ecotoxicological approach: a case study of the Piracicaba River (São Paulo, Brazil). Environ Sci Pollut Res Int 2013;20:4382-95. doi: 10.1007/s11356-013-1613-1CrossrefPubMedWeb of ScienceGoogle Scholar

  • 35. Moron S, Andrade C, Fernandes MN. Response of mucous cells of the gills of traíra (Hoplias malabaricus) and jeju (Hoplerythrinus unitaeniatus) (Teleostei: Erythrinidae) to hypo- and hyper-osmotic ion stress. Neotrop Ichthyol 2009;7:491-8. doi: 10.1590/S1679-62252009000300017Web of ScienceCrossrefGoogle Scholar

  • 36. Botelho RG, Santos JB, Fernandes KM, Neves CA. Effects of atrazine and picloram on grass carp: acute toxicity and histological assessment. Toxicol Environ Chem 2012;94:121-7. doi: 10.1080/02772248.2011.633915CrossrefWeb of ScienceGoogle Scholar

  • 37. Simonato JD, Guedes CLB, Martinez CBR. Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicol Environ Saf 2008;69:112-20. doi: 10.1016/j. ecoenv.2007.01.012 PubMedCrossrefGoogle Scholar

  • 38. Dornelles MF, Oliveira GT. Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Arch Environ Contam Toxicol 2013;66:415-29. doi: 10.1007/ s00244-013-9967-4CrossrefWeb of SciencePubMedGoogle Scholar

  • 39. Tabche LM, Oliván LG, Martinez MG, Castillo CR, Santiago AM. Toxicity of nickel in artificial sediment on acetylcholinesterase activity and hemoglobin concentration of the aquatic flea, Moina macrocopa. J Environ Hydrol 2000;8:1-10.Google Scholar

  • 40. Bretaud S, Toutant JP, Saglio P. Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotoxicol Environ Saf 2000;47:117-24. PMID: 11023689PubMedGoogle Scholar

  • 41. Miron DS, Crestani M, Shettinger RM, Maria Morsch M, Baldisserotto B, Angel Tierno M, Moraes G, Vieira VL. Effects of the herbicides clomazone, quinclorac and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae). Ecotoxicol Environ Saf 2005;61:398-403. PMID: 15922806 Google Scholar

About the article

Received: 2014-09-01

Accepted: 2015-03-01

Published Online: 2015-03-27

Published in Print: 2015-03-01


Citation Information: Archives of Industrial Hygiene and Toxicology, ISSN (Online) 0004-1254, DOI: https://doi.org/10.1515/aiht-2015-66-257.

Export Citation

© Institute for Medical Research and Occupational Health . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
J.F. DELLA VECHIA, C. CRUZ, A.F. SILVA, W.R. CERVEIRAJR., and N. GARLICH
Planta Daninha, 2016, Volume 34, Number 3, Page 597
[2]
Chunxiang Hao, Aurore Gely-Pernot, Christine Kervarrec, Melissa Boudjema, Emmanuelle Becker, Pavel Khil, Sergei Tevosian, Bernard Jégou, and Fatima Smagulova
Nucleic Acids Research, 2016, Page gkw840

Comments (0)

Please log in or register to comment.
Log in