Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

4 Issues per year


IMPACT FACTOR 2016: 1.395

CiteScore 2016: 1.25

SCImago Journal Rank (SJR) 2016: 0.404
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Open Access
Online
ISSN
0004-1254
See all formats and pricing
More options …
Volume 66, Issue 4

Issues

Major royal jelly proteins as markers of authenticity and quality of honey / Glavni proteini matične mliječi kao markeri izvornosti i kakvoće meda

Katarina Bilikova / Tatiana Kristof Krakova / Kikuji Yamaguchi / Yoshihisa Yamaguchi
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/aiht-2015-66-2653

Until now, the properties of honey have been defined based exclusively on the content of plant components in the nectar of given plant. We showed that apalbumin1, the major royal jelly (RJ) protein, is an authentic and regular component of honey. Apalbumin1 and other RJ proteins and peptides are responsible for the immunostimulatory properties and antibiotic activity of honey. For the quantification of apalbumin1, an enzyme-linked immunosorbent assay (ELISA) was developed using polyclonal anti-apalbumin1 antibody. The method is suitable for honey authenticity determination; moreover it is useful for detection of the honey, honeybee pollen and RJ in products of medicine, pharmacy, cosmetics, and food industry, where presences of these honeybee products are declared. Results from the analysis for presence and amount of apalbumin1 in honeys will be used for high-throughput screening of honey samples over the world. On the basis of our experiments which show that royal jelly proteins are regular and physiologically active components of honey we propose to change the definition of honey (according to the EU Honey Directive 2001/110/EC) as follows: Honey is a natural sweet substance produced by honey bees from nectar of plants or from secretions of plants, or excretions of plant sucking insects, which honey bees collect, transform by combining with major royal jelly proteins and other specific substances of their own, deposit, dehydrate, store and leave in the honey comb to ripen and mature.

Do sada su svojstva meda bila definirana isključivo na temelju sadržaja komponenti nektara određene biljke. Mi smo pokazali da je apalbumin1, glavni protein matične mliječi, izvoran i uobičajeni sastojak meda. Apalbumin1, ostali proteini matične mliječi i peptidi odgovorni su za imunostimulatorna svojstva i antibiotsko djelovanje meda. Korištenjem poliklonalnog anti-apalbumin 1 protutijela osmišljen je imunoenzimski test (ELISA) za kvantifikaciju apalbumina 1. Metoda je ne samo prikladna za utvrđivanje izvornosti meda nego i korisna za detekciju meda, peluda i matične mliječi u medicinskim, farmaceutskim, kozmetičkim i prehrambenim proizvodima na kojima je naznačena prisutnost pčelinjih proizvoda. Rezultati analize prisutnosti i količine apalbumina 1 koristit će se za probir velike količine uzoraka meda diljem svijeta. Na temelju naših eksperimenata, koji pokazuju da su proteini matične mliječi uobičajene i fiziološki aktivne komponente meda, predlažemo izmjenu definicije meda (na temelju Direktive EU-a o medu 2001/110/EC): Med je prirodna slatka tvar koju pčele proizvode od nektara ili izlučevina biljaka ili izlučevina insekata koji sišu biljke. Nju pčele skupljaju, pretvaraju kombinacijom glavnih proteina matične mliječi i ostalih vlastitih specifičnih tvari, polažu, dehidriraju, pohranjuju i ostavljaju u saću da sazrije.

Keywords: royal jelly proteins; antimicrobial peptides; honey authenticity

Ključne riječi: antimikrobni peptidi; izvornost meda; proteini matične mliječi

References

  • 1. Singhal RS, Kulkarni PR, Rege DV. Honey: Quality criteria. In: Singhal RS, Kulkarni PR, Reg DV, editors. Handbook of indices of food quality and authenticity. Chapter 7. Cambridge. Woodhead Publishing Ltd.; 1997. p. 358-85.Google Scholar

  • 2. Israili ZH. Antimicrobial properties of honey. Am J Ther 2014;21:304-23. doi: 10.1097/MJT.0b013e318293b09bCrossrefGoogle Scholar

  • 3. Bogdanov S. Antibacterial substances in honey. Bee Products Science 2008;1-10.Google Scholar

  • 4. Irish JS, Blair S, Carter DA. The antibacterial activity of honey derived from Australian flora. PLoS One 2011;6:e18229. doi: 10.1371/journal.pone.0018229CrossrefGoogle Scholar

  • 5. Šimúth J, Bíliková K, Kováčová E, Kuzmová Z, Schroeder W. Immunochemical approach to detection of adulteration in honey: physiologically active royal jelly protein stimulating TNF-α release is a regular component of honey.J Agric Food Chem 2004;52:2154-8. doi: 10.1021/jf034777yCrossrefGoogle Scholar

  • 6. Bíliková K, Wu G, Šimúth J. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie 2001;32:275-83. doi: 10.1051/apido:2001129CrossrefGoogle Scholar

  • 7. Bíliková K, Mirgorodskaya E, Bukovská G, Gobom J, Lehrach H, Šimúth J. Towards functional proteomics of minority component of honeybee royal jelly: The effect of post-translational modifications on the antimicrobial activity of apalbumin2. Proteomics 2009;9:2131-8. doi: 10.1002/ pmic.200800705CrossrefGoogle Scholar

  • 8. Brudzynski K, Abubaker K, St-Martin L, Castle A. Reexamining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Front Microbiol 2011;2:213. doi: 10.3389/fmicb.2011.00213Web of ScienceCrossrefGoogle Scholar

  • 9. de la Fuente E, Sanz ML, Martinez-Castro I, Sanz J, Ruiz- Matute AI. Volatile and carbohyrate composition of rare unifloral honeys from Spain. Food Chem 2007;105:84-93. doi: 10.1016/j.foodchem.2007.03.039CrossrefWeb of ScienceGoogle Scholar

  • 10. Arvanitoyannis IS, Chalhoub C, Gotsiou P, Lydakis- Simantiris N, Kefalas P. Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Crit Rev Food Sci Nutr 2005;45:193-203. doi: 10.1080/10408690590956369CrossrefWeb of ScienceGoogle Scholar

  • 11. Johanson R. Food Fraud and “Economically Motivated Adulteration” of Food and Food Ingredients, CRS Report January 2014 [displayed 4 December 2015]. Available at http://fas.org/sgp/crs/misc/R43358.pdfGoogle Scholar

  • 12. Ruoff K, Luginbuhl W, Kunzli R, Iglesias MT, Bogdanov S, Bosset JO, von der Ohe K, von der Ohe W, Amado R. Authentication of the botanical and geographic origin of honey by mid-infrared spectroscopy. J Agric Food Chem 2006;54:6873-80. doi: 10.1021/jf060838rCrossrefGoogle Scholar

  • 13. Tomás-Barberán FA, Martos I, Ferreres F, Radovic BS, Anklam E. HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J Sci Food Agric 2001;81:485-96. doi: 10.1002/jsfa.836CrossrefGoogle Scholar

  • 14. Pichichero E, Canuti L, Canini A. Characterisation of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. J Sci Food Agric 2009;89:609-16. doi: 10.1002/jsfa.3484CrossrefGoogle Scholar

  • 15. Siede R, Schmidt C, Büchler R. A PCR based apple detection method as a complementary instrument for the honey quality assessment. Dtsch Lebensmittel-Rundschau 2004;100:381-4.Google Scholar

  • 16. Molan PC. Why honey is effective as a medicine. 2. The scientific explanation of its effects. Bee World 2001;82:22-40. doi: 10.1080/0005772X.2001.11099498CrossrefGoogle Scholar

  • 17. Cooper RA, Molan PC, Harding KG. The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J Appl Microbiol 2002;93:857-63. PMID: 12392533Google Scholar

  • 18. Cooper RA. Honey in wound care: antimicrobial properties.GMS Krankenhhyg Interdiszip 2007;2(2):Doc51. PMCID: PMC2831240 Google Scholar

  • 19. White JWJr, Rudyj ON. The protein content of honey. J Apicult Res 1978;17:234-8.Google Scholar

  • 20. Azeredo LC, Azeredo MAA, de Souza RS, Dutra VML.Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food Chem 2003;80:249-54. doi: 10.1016/S0308-8146(02)00261-3CrossrefGoogle Scholar

  • 21. Ohashi K, Sawata M, Takeuchi H, Natori S, Kubo T.Molecular cloning of cDNA and analysis of expression of the gene for α-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem Biophys Res Commun 1996;221:380-385. PMID: 8619864Google Scholar

  • 22. Scheparts, A. The glucose oxidase of honey. II. Stereochemical substrate specificity. Biochim Biophys Acta 1965;96:334-6. doi:10.1016/0005-2787(65)90597-6CrossrefGoogle Scholar

  • 23. Pontoh J, Low NH. Purification and characterization of β-glucosidase from honeybees (Apis mellifera). Insect Biochem Mol Biol 2002;32:679-90. doi: 10.1016/S0965-1748(01)00147-3CrossrefGoogle Scholar

  • 24. Babcan S, Pivarnik LF, Rand AG. Honey amylase activity and food starch degradation. J Food Sci 2002;67:1625-30. doi: 10.1111/j.1365-2621.2002.tb08695.xCrossrefGoogle Scholar

  • 25. Di Girolamo F, D´Amato A, Righetti PG. Assessment of the floral origin of honey via proteomic tools. J Proteomics 2012;75:3688-93. doi: 10.1016/j.jprot.2012.04.029Web of ScienceCrossrefGoogle Scholar

  • 26. Hanes J, Šimúth J. Identification and partial characterization of the major royal jelly protein of the honeybee (Apis mellifera L). J Apicult Res 1992;31:22-6. doi: 10.1080/00218839.1992.11101256CrossrefGoogle Scholar

  • 27. Schmitzová J, Klaudiny J, Albert Š; Schröder W, Schrockengost V, Hanes J, Šimúth J. A family of major royal jelly proteins of the honeybee Apis mellifera. L Cell Mol Life Sci 1998;54:1020-30. doi: 10.1007/s000180050229CrossrefGoogle Scholar

  • 28. Šimúth J. Some properties of the main protein of the honeybee (Apis mellifera) royal jelly. Apidologie 2001;32:69-80. doi: 10.1051/apido:2001112CrossrefGoogle Scholar

  • 29. Malecová B, Ramser J, O’Brien JK, Janitz M, Júdová J, Lehrach H, Šimúth J. Honeybee (Apis mellifera L.) mrjp gene family: computational analysis of putative promoters and genomic structure of mrjp1, the gene coding for the most abundant protein of larval food. Gene 2003;303:165-75. doi: 10.1016/S0378-1119(02)01174-5Google Scholar

  • 30. The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006;443:931-47. doi: 10.1038/ nature05260CrossrefGoogle Scholar

  • 31. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K. Potent antibacterial protein in royal jelly.Purification and determination of the primary structure of royalisin. J Biol Chem 1990;265:11333-7. PMID: 2358464Google Scholar

  • 32. Bíliková K, Hanes J, Nordhoff E, Saenger W, Klaudiny J, Šimúth J. Apisimin, a new serine valin-rich peptide from honeybee (Apis mellifera L.) royal jelly: purification and molecular characterization. FEBS Lett 2002;528:125-9.Google Scholar

  • 33. Li J, Ting W, Zhaohui Z, Yinghong P. Proteomic analysis of royal jelly from three strains of western honeybees (Apis mellifera). J Agric Food Chem 2007;55:8411-22. doi: 10.1021/jf0717440CrossrefWeb of ScienceGoogle Scholar

  • 34. Okamoto I, Taniguchi Y, Kunikata T, Kohno K, Iwaki K, Ikeda M, Kurimoto M. Major royal jelly protein 3 exhibits antialergic effects in vitro and in vivo. Life Sci 2003;73:2029-45. doi. 10.1016/S0024-3205(03)00562-9 CrossrefGoogle Scholar

  • 35. Kamakura M, Suenobu N, Fukushima M. Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochem Biophys Res Commun 2001;282:865-74. doi: 10.1006/bbrc.2001.4656CrossrefGoogle Scholar

  • 36. Klaudiny J, Albert S, Bachanová K, Kopernický J, Šimúth J. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem Mol Biol 2005;35:11-22. doi: 10.1016/j.ibmb.2004.09.007CrossrefGoogle Scholar

  • 37. Evans DJ. Transcriptional immune responses by honeybee larvae during invasion by the bacterial pathogen Paenibacillus larvae. J Invertebrate Pathol 2004;85:105-11. doi: 10.1016/j. jip.2004.02.004CrossrefGoogle Scholar

  • 38. Bieke Sch, de Graaf DC, Goossensb K, Peelman LJ, Jacobs FJ. Differential gene expression in the honeybee head after a bacterial challenge. Dev Comp Immunol 2008;32:883-9. doi: 10.1016/j.dci.2008.01.010CrossrefGoogle Scholar

  • 39. Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids.Int J Antimicrobial Agents 2005;26:343-56. doi: 10.1016/j. ijantimicag.2005.09.002CrossrefGoogle Scholar

  • 40. Henrotin Y, Lambert C, Couchourel D, Ripoll C, Chiotelli E. Nutraceuticals: do they represent a new era in the management of osteoarthritis? - a narrative review from the lessons taken with five products. Osteoarthritis Cartilage 2011;19:1-21. doi: 10.1016/j.joca.2010.10.017CrossrefGoogle Scholar

  • 41. Fujiwara H, Kogure A, Sakamoto M, Yamakuni T, Mimaki Y, Murata K, Hitomi N, Yamaguchi K, Ohizumi Y. Honeybee royal jelly and nobiletin stimulate CRE-mediated transcription Web of ScienceGoogle Scholar

About the article

Received: 2015-04-01

Accepted: 2015-11-01

Published Online: 2015-12-30

Published in Print: 2015-12-01


Citation Information: Archives of Industrial Hygiene and Toxicology, Volume 66, Issue 4, Pages 259–267, ISSN (Online) 0004-1254, DOI: https://doi.org/10.1515/aiht-2015-66-2653.

Export Citation

© Institute for Medical Research and Occupational Health . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in