Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

4 Issues per year

IMPACT FACTOR 2016: 1.395

CiteScore 2016: 1.25

SCImago Journal Rank (SJR) 2016: 0.404
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Open Access
See all formats and pricing
More options …
Volume 67, Issue 4


Air sampling by pumping through a filter: effects of air flow rate, concentration, and decay of airborne substances

Marko Šoštarić / PhD. Branko Petrinec
  • Corresponding author
  • Institute for Medical Research and Occupational Health, Radiation Protection Unit, Ksaverska cesta 2, HR–10001 Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dinko Babić
Published Online: 2016-12-22 | DOI: https://doi.org/10.1515/aiht-2016-67-2885


This paper tackles the issue of interpreting the number of airborne particles adsorbed on a filter through which a certain volume of sampled air has been pumped. This number is equal to the product of the pumped volume and particle concentration in air, but only if the concentration is constant over time and if there is no substance decomposition on the filter during sampling. If this is not the case, one must take into account the inconstancy of the concentration and the decay law for a given substance, which is complicated even further if the flow rate through the filter is not constant. In this paper, we develop a formalism which considers all of these factors, resulting in a single, compact expression of general applicability. The use of this expression is exemplified by addressing a case of sampling airborne radioactive matter, where the decay law is already well known. This law is combined with three experimentally observed time dependence of the flow rate and two models for the time dependence of the particle concentration. We also discuss the implications of these calculations for certain other situations of interest to environmental studies.

Keywords: air sampling filters; particle concentration; radioactivity; substance decomposition


  • 1. International Electrotechnical Commission (IEC). IEC 61452:1995. Nuclear instrumentation - Measurement of gamma-ray emission rates of radionuclides - Calibration and use of germanium spectrometers.Google Scholar

  • 2. Jiménez-Ramos MC, Manjón G, Abril JM. Influence of sampling air flow rate in the decay correction applied to the determination of 7Be and short-lived radionuclides in aerosol samples. Atm Environ 2006;40:7215-21. doi:CrossrefGoogle Scholar

  • 3. Burrows HD, Canle LM, Santaballa JA, Steenken S. Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B 2002;67:71-108. doi:CrossrefGoogle Scholar

  • 4. Preston KF, Cvetanović RJ. The decomposition of inorganic oxides and sulphides, in Decomposition of inorganic and organometallic compounds. In: Bamford CH, Compton RG, Tipper CFH, editors: Decomposition of inorganic and organometallic compounds. Chapeter 2. Amsterdam: Elsevier; 1972. p. 47-141.Google Scholar

  • 5. Baeza A, Rio LM, del Jiménez A, Miró C, Paniagua JM, Rufo M. Analysis of the temporal evolution of atmospheric 7Be as a vector of the behaviour of other radionuclides in the atmosphere. J Radioanal Nuclear Chem 1996;207:331-4. doi:CrossrefGoogle Scholar

  • 6. Dueñas C, Fernández MC, Liger E, Carretero J. Gross alpha, gross beta and 7Be concentrations in surface air: analysis of their variations and prediction model. Atm Environ 1999;33:3705-15. doi:CrossrefWeb of ScienceGoogle Scholar

  • 7. Ródenas C, Gómez J, Quindós LS, Fernández PL, Soto J. 7Be concentrations in air, rainwater and soil in Cantabria (Spain). Appl Radiat Isot 1997;48:545-8. doi:CrossrefGoogle Scholar

  • 8. Vecchi R, Marcazzan G, Valli G. Seasonal variation of 210Pb activity concentration in outdoor air of Milan (Italy). J Environ Radioact 2005;82:251-66. doi:CrossrefGoogle Scholar

  • 9. Franić Z, Šega K, Petrinec B, Marović G. Long-term investigations of post-Chernobyl radiocaesium in fallout and air in North Croatia. Environ Monit Assess 2009;148:315-23. doi:CrossrefWeb of ScienceGoogle Scholar

  • 10. Gerasopoulos E, Zerefos CS, Papastefanou C, Zanis P, O’Brien K. Low-frequency variability of Beryllium-7 surface concentrations over the Eastern Mediterranean. Atm Environ 2003;37:1745-56. doi:CrossrefGoogle Scholar

  • 11. Todorović D, Popović D, Djurić G. Concentration measurements of 7Be and 137Cs in ground-level air in the Belgrade City area. Environ Int 1999;25:59-66. doi:CrossrefGoogle Scholar

  • 12. Vecchi R, Valli G. 7Be in surface air: a natural atmospheric tracer. J Aerosol Sci 1997;28:895-900. doi:CrossrefGoogle Scholar

  • 13. Yu KN, Lee LYL. Measurement of atmospheric 7Be properties using high-efficiency gamma spectroscopy. Appl Radiat Isot 2002;57:941-6. doi:CrossrefGoogle Scholar

  • 14. Petrinec B, Franić Z, Bituh T, Babić D. Quality assurance in gamma-ray spectrometry of seabed sediments. Arh Hig Rada Toksikol 2011;62:17-23. doi:CrossrefGoogle Scholar

  • 15. Davila S, Pečar Ilić J, Bešlić I. Real-time dissemination of air quality information using data streams and Web technologies: linking air quality to health risks in urban areas. Arh Hig Rada Toksikol 2015;66:171-80. doi:CrossrefGoogle Scholar

About the article

Received: 2016-09-01

Accepted: 2016-11-01

Published Online: 2016-12-22

Published in Print: 2016-12-01

Citation Information: Archives of Industrial Hygiene and Toxicology, Volume 67, Issue 4, Pages 326–331, ISSN (Online) 0004-1254, DOI: https://doi.org/10.1515/aiht-2016-67-2885.

Export Citation

© Institute for Medical Research and Occupational Health . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in