Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

4 Issues per year


IMPACT FACTOR 2016: 1.420
5-year IMPACT FACTOR: 1.597

CiteScore 2016: 1.81

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 1.440

Mathematical Citation Quotient (MCQ) 2016: 0.08

Open Access
Online
ISSN
2083-8492
See all formats and pricing
More options …
Volume 18, Issue 2 (Jun 2008)

Issues

Controllability and Observability of Linear Discrete-Time Fractional-Order Systems

Said Guermah
  • Laboratoire de Conception et Conduite des Systèmes de Production, Universitè Mouloud Mammeri de Tizi-Ouzou, BP 17 RP, Tizi-Ouzou
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Said Djennoune
  • Laboratoire de Conception et Conduite des Systèmes de Production, Universitè Mouloud Mammeri de Tizi-Ouzou, BP 17 RP, Tizi-Ouzou
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maamar Bettayeb
  • Electrical & Computer Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-06-16 | DOI: https://doi.org/10.2478/v10006-008-0019-6

Controllability and Observability of Linear Discrete-Time Fractional-Order Systems

In this paper we extend some basic results on the controllability and observability of linear discrete-time fractional-order systems. For both of these fundamental structural properties we establish some new concepts inherent to fractional-order systems and we develop new analytical methods for checking these properties. Numerical examples are presented to illustrate the theoretical results.

Keywords: system modeling; discrete fractional state-space systems; reachability; controllability; observability; controllability and observability Gramians

  • Antsaklis P.J. and Michel A.N. (1997). Linear Systems, McGraw-Hill, New York.Google Scholar

  • Åström K. J. and Wittenmark B. (1996). Computer- Controlled Systems, Theory and Design, 3rd Ed., Prentice Hall Inc., New Jersey.Google Scholar

  • Axtell M. and Bise E. M. (1990). Fractional calculus applications in control systems, Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, New York, USA, pp. 536-566.Google Scholar

  • Battaglia J. L., Cois O., Puigsegur L. and Oustaloup A. (2001). Solving an inverse heat conduction problem using a non-integer identified model, International Journal of Heat and Mass Transfer, 44(14): 2671-2680.Google Scholar

  • Bettayeb M. and Djennoune S. (2006). A note on the controllability and the observability of fractional dynamical systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Workshop Applications, Porto, Portugal, pp. 506-511.Google Scholar

  • Boukas E.K. (2006). Discrete-time systems with time-varying time delay: Stability and stabilizability, Mathematical Problems in Engineering, bf 2006 (ID42489): 1-10.Google Scholar

  • Cois O., Oustaloup A., Battaglia E. and Battaglia J.L. (2002). Non integer model from modal decomposition for time domain identification, 41st IEEE CDC'2002 Tutorial Workshop 2, Las Vegas, USA.Google Scholar

  • Debeljković D. Lj., Aleksendrić M., Yi-Yong N. and Zhang Q. L. (2002). Lyapunov and non-Lyapunov stability of linear discrete time delay systems, Facta Universitatis, Series: Mechanical Engineering 1(9): 1147-1160.Google Scholar

  • Dorĉák L., Petras I. and Kostial I. (2000). Modeling and analysis of fractional-order regulated systems in the state-space, Procedings of International Carpathian Control Conference, High Tatras, Slovak Republic, pp. 185-188.Google Scholar

  • Dzieliński A. and Sierociuk D. (2005). Adaptive feedback control of fractional order discrete state-space systems, Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'05), Vienna Austria, pp. 804-809.Google Scholar

  • Dzieliński A. and Sierociuk D. (2006). Observer for discrete fractional order systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation Applications, Porto, Portugal, pp. 524-529.Google Scholar

  • Dzieliński A. and Sierociuk D. (2007). Reachability, controllability and observability of the fractional order discrete statespace system, Proceedings of the IEEE/IFAC International Conference on Methods and Models in Automation and Robotics, MMAR'2007, Szczecin, Poland, pp. 129-134.Google Scholar

  • Gorenflo R. and Mainardi F. (1997). Fractional calculus: Integral and differential equations of fractional order, in (A. Carpintieri and F. Mainardi, Eds.) Fractals and Fractional Calculus in Continuum Mechanics, Vienna, New York, Springer Verlag.Google Scholar

  • Hanyga A. (2003). Internal variable models of viscoelasticity with fractional relaxation laws, Proceddings of Design Engineering Technical Conference, Mechanical Vibration and Noise, 48395, American Society of Mechanical Engineers, Chicago, USA.Google Scholar

  • Hotzel R. and Fliess M. (1998). On linear system with a fractional derivation: Introductory theory and examples, Mathematics and Computers in Simulation 45(3): 385-395.Google Scholar

  • Ichise M., Nagayanagi Y. and Kojima T. (1971). An analog simulation of non integer order transfer functions for analysis of electrode processes, Journal of Electroanalytical Chemistry 33(2): 253-265.CrossrefGoogle Scholar

  • Kilbas A. A., Srivasta H.M. and Trujillo J. J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.Google Scholar

  • Lakshmikantham D. T. V. (1998). Theory of Difference Equations: Numerical Methods and Applications, Academic Press, New York.Google Scholar

  • Manabe S. (1960). The non-integer integral and its application to control systems, Japanese Institute of Electrical Engineers Journal 80(860): 589-597.Google Scholar

  • Matignon D. (1994). Reprèsentation en variables d'ètat de modèles de guides d'ondes avec dèrivation fractionnaire, Ph.D. thesis, Universitè Paris XI, France.Google Scholar

  • Matignon D., d'Andrèa Novel B., Depalle P. and Oustaloup A. (1994). Viscothermal Losses in Wind Instruments: A Non-Integer Model, Academic Verlag, Berlin.Google Scholar

  • Matignon D. and d'Andrèa-Novel B. (1996). Some results on controllability and observability of finite-dimensional fractional differential systems, Proceedings of the IMACS, IEEE SMC Conference, Lille, France, pp. 952-956.Google Scholar

  • Matignon D. (1996). Stability results on fractional differential with application to control processing, Proceedings of the IAMCS, IEEE SMC Conference, Lille, France, pp. 963-968.Google Scholar

  • Miller K. S. and Ross B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations,Wiley, New York.Google Scholar

  • Mittag-Leffler G. (1904). Sur la reprèsentation analytique d'une branche uniforme d'une fonction monogène, Acta Mathematica 29: 10-181.Google Scholar

  • Oldham K. B. and Spanier J. (1974). The Fractional Calculus, Academic Press, New York.Google Scholar

  • Oustaloup A. (1983). Systèmes asservis linèaires d'ordre fractionnaire, Masson, Paris.Google Scholar

  • Oustaloup A. (1995). La Dèrivation non entière: Thèorie, synthèse et applications, Hermès, Paris.Google Scholar

  • Peng Y., Guangming X. and Long W. (2003). Controllability of linear discrete-time systems with time-delay in state, available at http://dean.pku.edu.cn/bksky/1999tzlwj/4.pdf

  • Podlubny I. (1999). Fractional Differential Equations, Academic Press, San Diego.Google Scholar

  • Raynaud H. F., Zergainoh A. (2000). State-space representation for fractional-order controllers, Automatica 36(7): 1017-1021.CrossrefGoogle Scholar

  • Sabatier J., Cois O. and Oustaloup A. (2002). Commande de systèmes non entiers par placement de pôles, Deuxième Confèrence Internationale Francophone d'Automatique, CIFA, Nantes, France.Google Scholar

  • Samko S. G., Kilbas A. A. and Marichev O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam.Google Scholar

  • Sierociuk D. and Dzieliński A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129-140.Google Scholar

  • Valerio D. and Sa da Costa J. (2004). Non-integer order control of a flexible robot, Proceedings of the IFAC Workshop on Fractional Differentiation and its Applications, FDA'04, Bordeaux, France.Google Scholar

  • Vinagre B. M., Monje C. A. and Caldero A. J. (2002). Fractional order systems and fractional order actions, Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, 41st IEEE CDC, Las Vegas, USA.Google Scholar

About the article


Published Online: 2008-06-16

Published in Print: 2008-06-01


Citation Information: International Journal of Applied Mathematics and Computer Science, ISSN (Print) 1641-876X, DOI: https://doi.org/10.2478/v10006-008-0019-6.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Venkatesan Govindaraj and Raju K. George
Mathematical Control and Related Fields, 2017, Volume 7, Number 4, Page 537
[2]
Ouerdia Megherbi, Hamid Hamiche, Saïd Djennoune, and Maamar Bettayeb
Nonlinear Dynamics, 2017
[3]
Sarah Kassim, Hamid Hamiche, Saïd Djennoune, and Maâmar Bettayeb
Nonlinear Dynamics, 2017, Volume 88, Number 4, Page 2473
[4]
Shyam Kamal and Bijnan Bandyopadhyay
IFAC Proceedings Volumes, 2014, Volume 47, Number 1, Page 558
[5]
Maamar Bettayeb, Said Djennoune, Said Guermah, and Malek Ghanes
IFAC Proceedings Volumes, 2008, Volume 41, Number 2, Page 15262
[6]
Krishnan Balachandran and Jayakumar Kokila
International Journal of Applied Mathematics and Computer Science, 2012, Volume 22, Number 3
[7]
Alexey Zhirabok and Alexey Shumsky
International Journal of Applied Mathematics and Computer Science, 2012, Volume 22, Number 3
[8]
Hao Zhang, Diyi Chen, Bei-Bei Xu, and Rui Zhou
Journal of Circuits, Systems and Computers, 2015, Volume 24, Number 06, Page 1550087
[9]
Hao Zhang, Di-Yi Chen, Kun Zhou, and Yi-Chen Wang
Chinese Physics B, 2015, Volume 24, Number 3, Page 030203
[10]
K. Balachandran, V. Govindaraj, M. Rivero, and J.J. Trujillo
Applied Mathematics and Computation, 2015, Volume 257, Page 66
[11]
Yiheng Wei, Qing Gao, Cheng Peng, and Yong Wang
International Journal of Control, Automation and Systems, 2014, Volume 12, Number 6, Page 1180
[12]
Ravi P. Agarwal, Bashir Ahmad, Ahmed Alsaedi, and Hana Al-Hutami
Abstract and Applied Analysis, 2014, Volume 2014, Page 1
[13]
Krishnan Balachandran and Venkatesan Govindaraj
Optimization, 2014, Volume 63, Number 8, Page 1267
[14]
Lihong Zhang, Bashir Ahmad, and Guotao Wang
Abstract and Applied Analysis, 2014, Volume 2014, Page 1
[15]
Yang Liu, Hong-Wei Chen, and Jian-Quan Lu
International Journal of Systems Science, 2014, Volume 45, Number 11, Page 2411
[16]
Yuan-Ming Liu and I-Kong Fong
International Journal of Systems Science, 2012, Volume 43, Number 4, Page 610
[17]
Dorota Mozyrska and Ewa Pawłuszewicz
International Journal of Control, 2012, Volume 85, Number 2, Page 213
[18]
HernánR Henríquez and Claudio Cuevas
Advances in Difference Equations, 2010, Volume 2010, Number 1, Page 695290
[19]
Dominik Sierociuk, Inés Tejado, and Blas M. Vinagre
Signal Processing, 2011, Volume 91, Number 3, Page 542
[20]
Hernán R. Henríquez and Claudio Cuevas
Advances in Difference Equations, 2010, Volume 2010, Page 1
[21]
Bartosz Bandrowski, Anna Karczewska, and Piotr Rozmej
International Journal of Applied Mathematics and Computer Science, 2010, Volume 20, Number 2
[22]
Davide Verotta
Journal of Pharmacokinetics and Pharmacodynamics, 2010, Volume 37, Number 2, Page 209

Comments (0)

Please log in or register to comment.
Log in