Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

4 Issues per year


IMPACT FACTOR 2016: 1.420
5-year IMPACT FACTOR: 1.597

CiteScore 2016: 1.81

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 1.440

Mathematical Citation Quotient (MCQ) 2016: 0.08

Open Access
Online
ISSN
2083-8492
See all formats and pricing
More options …
Volume 18, Issue 3 (Sep 2008)

Issues

An Automatic Hybrid Method for Retinal Blood Vessel Extraction

Yong Yang
  • School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
  • School of Information Management, Jiangxi University of Finance and Economics, Nanchang 330013, P. R. China
/ Shuying Huang
  • School of Electronics, Jiangxi University of Finance and Economics, Nanchang 330013, P. R. China
/ Nini Rao
  • School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
Published Online: 2008-10-06 | DOI: https://doi.org/10.2478/v10006-008-0036-5

An Automatic Hybrid Method for Retinal Blood Vessel Extraction

The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. This paper presents a novel hybrid automatic approach for the extraction of retinal image vessels. The method consists in the application of mathematical morphology and a fuzzy clustering algorithm followed by a purification procedure. In mathematical morphology, the retinal image is smoothed and strengthened so that the blood vessels are enhanced and the background information is suppressed. The fuzzy clustering algorithm is then employed to the previous enhanced image for segmentation. After the fuzzy segmentation, a purification procedure is used to reduce the weak edges and noise, and the final results of the blood vessels are consequently achieved. The performance of the proposed method is compared with some existing segmentation methods and hand-labeled segmentations. The approach has been tested on a series of retinal images, and experimental results show that our technique is promising and effective.

Keywords: blood vessel extraction; retinal image; mathematical morphology; fuzzy clustering

  • Ayala G., Leon T. and Zapater V. (2005). Different averages of a fuzzy set with an application to vessel segmentation, IEEE Transactions on Fuzzy Systems13(3): 384-393.Google Scholar

  • Bezdek J. C.(1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, NY.Google Scholar

  • Can A., Shen H., Turner J. N., Tanenbaum H. L., and Roysam D. B. (1999). Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine3(2): 125-138.Google Scholar

  • Chanwimaluang T. and Fan G. (2003). An efficient blood vessel detection algorithm for retinal images using local entropy thresholding, Proceedings of IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 5, pp. 21-24.Google Scholar

  • Chaudhuri S., Chatterjee S., Katz N., Nelson M. and Goldbaum M. (1989). Detection of blood vessels in retinal images using two-dimensional matched filters, IEEE Transactions on Medical Imaging8(3): 263-269.CrossrefGoogle Scholar

  • Chutatape O., Zheng L. and Krishnan S. M. (1998). Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters, Proceedings of the IEEE Conference on Engineering in Medicine and Biology, Hong Kong, China, Vol. 6, pp. 3144-3149.Google Scholar

  • Chutatape O., Zheng L. and Krishnan S. M. (1998). Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters, Proceedings of the IEEE Conference on Engineering in Medicine and Biology, Hong Kong, China, Vol. 6, pp. 3144-3149.Google Scholar

  • Cote B., Hart W., Goldbaum M., Kube P. and Nelson M. (1994). Classification of blood vessels in ocular fundus images, Technical report, University of California, San Diego, CA.Google Scholar

  • Dunn J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters, Journal of Cybernetics3(3): 32-57.CrossrefGoogle Scholar

  • EI-Khamy S. E., Ghaleb I. and EI-Yamany N. A. (2002). Fuzzy edge detection with minimum fuzzy entropy criterion, Proceedings of the Mediterranean Electrotechnical Conference, Cairo, Egypt, 1: 498-503.Google Scholar

  • Gao X. H., Bharath A., Stanton A., Hughes A., Chapman N. and Thom S. (2001). A method of vessel tracking for vessel diameter measurement on retinal images, Proceedings of IEEE International Conference on Image Processing, Thessaloniki, Greece, Vol. 2, pp. 881-884.Google Scholar

  • Hoover A., Kouznetsova V. and Goldbaum M. (2000). Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Transactions on Medical Imaging, 19(3): 203-210.Google Scholar

  • Jorge J. G. L., Joao V. B. S., Roberto M. C. J. and Herbert F. J. (2003). Blood vessels segmentation in non-mydriatic images using wavelets and statistical classifiers, Proceedings of Brazilian Symposium on Computer Graphics and Image Processing, Sao Carlos, Brazil, 1: pp. 262-269.Google Scholar

  • Kochner B., Schulmann D., Michaelis M., Mann G. and Englemeier K. H. (1998). Course tracking and contour extraction of retinal vessels from colour fundus photographs: Most efficient use of steerable filters for model based image analysis, SPIE Proceedings of Medical Imaging3328(2): 755-761.Google Scholar

  • Otsu N. (1979). A threshold selection method from gray level histogram, IEEE Transactions on Systems, Man, and Cybernetics9(1): 62-66.Google Scholar

  • Rawi M. A., Qutaishat M. and Arrar M. (2007). An improved matched filter for blood vessel detection of digital retinal images, Computers in Biology and Medicine37(2): 262-267.CrossrefWeb of ScienceGoogle Scholar

  • Riveron E. F. and Guimeras N. G. (2006). Extraction of blood vessels in ophthalmic color images of human retinas, Lecture Notes in Computer Science, 4225: 118-126.Google Scholar

  • Serra J. and Soille P. (1994). Mathematical Morphology and Its Applications to Image Processing, Kluwer Academic Publishers, Boston, MA.Google Scholar

  • Sinthanayothin C., Boyee J. F., Williamson T. H., Cook H. L., Mensah E., Lal S. and Usher D. (2002). Automatic detection of diabetic retinopathy on digital fundus images, Diabetic Medicine19(2): 105-112.CrossrefGoogle Scholar

  • Staal J., AbramoffM. D., NiemeijerM., Viergever M. A. and Ginneken B. V. (2004). Ridge-based vessel segmentation in color images of the retina, IEEE Transactions on Medical Imaging23(4): 501-509.CrossrefWeb of ScienceGoogle Scholar

  • Stapor K., Switonski A., Chrastek R. and Michelson G. (2004). Segmentation of fundus eye images using methods of mathematical morphology for glaucoma diagnosis, Lecture Notes in Computer Science, 3039: 41-48.Google Scholar

  • Stapor K. and Switonski A. (2004). Automatic analysis of fundus eye images using mathematical morphology and neural networks for supporting glaucoma diagnosis, Machine Graphics & Vision13(1/2): 65-78.Google Scholar

  • Tamura S., Tanaka K., Ohmori S., Okazaki K., Okada A. and Hoshi M. (1983). Semiautomatic leakage analyzing system for time series fluorescein ocular fundus angiography, Pattern Recognition16(1): 149-162.CrossrefGoogle Scholar

  • Zana F. and Klein J. C. (2001). Segmentation of vessellike patterns using mathematical morphology and curvature evaluation, IEEE Transactions on Image Processing10(7): 1010-1019.CrossrefGoogle Scholar

About the article


Published Online: 2008-10-06

Published in Print: 2008-09-01


Citation Information: International Journal of Applied Mathematics and Computer Science, ISSN (Print) 1641-876X, DOI: https://doi.org/10.2478/v10006-008-0036-5.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in