Allen, L. J. S. and Burgin, A. M. (2000). Comparison of deterministic and stochastic SIS and SIR models in discrete time, *Mathematical Biosciences* **163**(1): 1-33.Google Scholar

Anderson, R. M. and May, R. M. (1979). Population biology of infectious diseases: Part 1, *Nature* **280**(5721): 361-367.Google Scholar

Berz, M. and Makino, K. (1998). Verified integration of ODEs and flows using differential algebraic methods on highorder Taylor models, *Reliable Computing* **4**(4): 361-369.CrossrefGoogle Scholar

Corliss, G. F. and Rihm, R. (1996). Validating an a priori enclosure using high-order Taylor series, *in* G. Alefeld, A. Frommer and B. Lang (Eds.), *Scientific Computing and Validated Numerics*, Akademie Verlag, Berlin, pp. 228-238.Google Scholar

de Jong, M. C. M., Diekmann, O. and Heesterbeek, H. (1995). How does transmission of infection depend on population size?, *in* D. Mollison (Ed.), *Epidemic Models: Their Structure and Relation to Data*, Cambridge University Press, Cambridge, pp. 84-94.Google Scholar

Dushoff, J., Plotkin, J. B., Levin, S. A. and Earn, D. J. D. (2004). Dynamical resonance can account for seasonality of influenza epidemics, *Proceedings of the National Academy of Sciences* **101**(48): 16915-16916.Google Scholar

Edelstein-Keshet, L. (2005). *Mathematical Models in Biology*, SIAM, Philadelphia, PA.Google Scholar

Fan, M., Li, M. Y. and Wang, K. (2001). Global stability of an SEIS epidemic model with recruitment and a varying total population size, *Mathematical Biosciences* **170**(2): 199-208.Google Scholar

Greenhalgh, D. (1997). Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity, *Mathematical and Computer Modelling* **25**(2): 85-107.CrossrefGoogle Scholar

Hansen, E. R. and Walster, G. W. (2004). *Global Optimization Using Interval Analysis*, Marcel Dekker, New York, NY.Google Scholar

Hethcote, H. W. (1976). Qualitative analysis of communicable disease models, *Mathematical Biosciences* **28**(4): 335-356.CrossrefGoogle Scholar

Jaulin, L., Kieffer, M., Didrit, O. and Walter, É. (2001). *Applied Interval Analysis*, Springer-Verlag, London.Google Scholar

Kearfott, R. B. (1996). *Rigorous Global Search: Continuous Problems*, Kluwer, Dordrecht.Google Scholar

Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics, *Proceedings of the Royal Society of London, Part A* **115**(772): 700-721.Google Scholar

Li, M. Y., Graef, J. R., Wand, L. and Karsai, J. (1999). Global dynamics of a SEIR model with varying total population size, *Mathematical Biosciences* **160**(2): 191-215.Google Scholar

Lin, Y. and Stadtherr, M. A. (2007). Validated solutions of initial value problems for parametric ODEs, *Applied Numerical Mathematics* **57**(10): 1145-1162.Web of ScienceCrossrefGoogle Scholar

Liu, W., Levin, S. A. and Iwasa, Y. (1986). Influence of non-linear incidence rates upon the behavior of SIRS epidemiological models, *Journal of Mathematical Biology* **23**(2): 187-204.CrossrefGoogle Scholar

Lohner, R. J. (1992). Computations of guaranteed enclosures for the solutions of ordinary initial and boundary value problems, *in* J. Cash and I. Gladwell (Eds.), *Computational Ordinary Differential Equations*, Clarendon Press, Oxford, pp. 425-435.Google Scholar

Makino, K. and Berz, M. (1996). Remainder differential algebras and their applications, *in* M. Berz, C. Bishof, G. Corliss and A. Griewank (Eds.), *Computational Differentiation: Techniques, Applications, and Tools*, SIAM, Philadelphia, PA, pp. 63-74.Google Scholar

Makino, K. and Berz, M. (1999). Efficient control of the dependency problem based on Taylor model methods, *Reliable Computing* **5**(1): 3-12.CrossrefGoogle Scholar

Makino, K. and Berz, M. (2003). Taylor models and other validated functional inclusion methods, *International Journal of Pure and Applied Mathematics* **4**(4): 379-456.Google Scholar

Nedialkov, N. S., Jackson, K. R. and Corliss, G. F. (1999). Validated solutions of initial value problems for ordinary differential equations, *Applied Mathematics and Computation* **105**:(1): 21-68.Google Scholar

Nedialkov, N. S., Jackson, K. R. and Pryce, J. D. (2001). An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE, *Reliable Computing* **7**(6): 449-465.CrossrefGoogle Scholar

Neher, M., Jackson, K. R. and Nedialkov, N. S. (2007). On Taylor model based integration of ODEs, *SIAM Journal on Numerical Analysis* **45**(1): 236-262.CrossrefGoogle Scholar

Neumaier, A. (1990). *Interval Methods for Systems of Equations*, Cambridge University Press, Cambridge.Google Scholar

Neumaier, A. (2003). Taylor forms—Use and limits, *Reliable Computing* **9**(1): 43-79.CrossrefGoogle Scholar

Pugliese, A. (1990). An SEI epidemic model with varying population size, *in* S. Busenberg and M. Martelli (Eds.), *Differential Equations Models in Biology, Epidemiology and Ecology, Lecture Notes in Computer Science*, Vol. **92**, Springer, Berlin, pp. 121-138.Google Scholar

## Comments (0)