Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

4 Issues per year


IMPACT FACTOR 2016: 1.420
5-year IMPACT FACTOR: 1.597

CiteScore 2016: 1.81

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 1.440

Mathematical Citation Quotient (MCQ) 2016: 0.08

Open Access
Online
ISSN
2083-8492
See all formats and pricing
More options …
Volume 19, Issue 4 (Dec 2009)

Issues

Controllability of nonlinear impulsive Ito type stochastic systems

Rathinasamy Sakthivel
Published Online: 2009-12-31 | DOI: https://doi.org/10.2478/v10006-009-0046-y

Controllability of nonlinear impulsive Ito type stochastic systems

In this article, we consider finite dimensional dynamical control systems described by nonlinear impulsive Ito type stochastic integrodifferential equations. Necessary and sufficient conditions for complete controllability of nonlinear impulsive stochastic systems are formulated and proved under the natural assumption that the corresponding linear system is appropriately controllable. A fixed point approach is employed for achieving the required result.

Keywords: complete controllability; resolvent matrix; impulsive Ito type stochastic equations; Brownian motion

  • Alotaibi, S., Sen, M., Goodwine, B. and Yang, K. T. (2004). Controllability of cross-flow heat exchangers, International Journal of Heat and Mass Transfer 47(5): 913-924.CrossrefWeb of ScienceGoogle Scholar

  • Balachandran, K. and Sakthivel, R. (2001). Controllability of integrodifferential systems in Banach spaces, Applied Mathematics and Computation 118(1): 63-71.CrossrefWeb of ScienceGoogle Scholar

  • Balasubramaniam, P. and Dauer, J. P. (2003). Controllability of semilinear stochastic evolution equations with time delays, Publicationes Mathematicae Debrecen 63(3): 279-291.Google Scholar

  • Bashirov, A. E. and Mahmudov, N. I. (1999). On concepts of controllability for deterministic and stochastic systems, SIAM Journal on Control and Optimization 37(6): 1808-1821.CrossrefGoogle Scholar

  • Keck, D. N. and McKibben, M. A. (2006). Abstract semilinear stochastic Ito Volterra integrodifferential equations, Journal of Applied Mathematics and Stochastic Analysis 20(2): 1-22.Google Scholar

  • Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer, Dordrecht.Google Scholar

  • Klamka, J. (2000). Schauders fixed-point theorem in nonlinear controllability problems, Control and Cybernetics 29(1): 153-165.Google Scholar

  • Klamka, J. (2007a). Stochastic controllability of linear systems with delay in control, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(1): 23-29.Google Scholar

  • Klamka, J. (2007b). Stochastic controllability of linear systems with state delays, International Journal of Applied Mathematics and Computer Science 17(1): 5-13.Google Scholar

  • Klamka, J. and Socha, L. (1977). Some remarks about stochastic controllability, IEEE Transactions on Automatic Control 22(5): 880-881.CrossrefGoogle Scholar

  • Klamka, J. and Socha, L. (1980). Some remarks about stochastic controllability for delayed linear systems, International Journal of Control 32(3): 561-566.CrossrefWeb of ScienceGoogle Scholar

  • Liu, B., Liu, X. Z. and Liao, X. X. (2007). Existence and uniqueness and stability of solutions for stochastic impulsive systems, Journal of Systems Science and Complexity 20(1): 149-158.CrossrefWeb of ScienceGoogle Scholar

  • Mahmudov, N. I. (2001). Controllability of linear stochastic systems, IEEE Transactions on Automatic Control 46(1): 724-731.CrossrefGoogle Scholar

  • Mahmudov, N. I. and Zorlu, S. (2003). Controllability of nonlinear stochastic systems, International Journal of Control 76(2): 95-104.CrossrefGoogle Scholar

  • Mahmudov, N. I. and Zorlu, S. (2005). Controllability of semilinear stochastic systems, International Journal of Control 78(13): 997-1004.CrossrefGoogle Scholar

  • Mao, X. (1997). Stochastic Differential Equations and Applications, Elis Horwood, Chichester.Google Scholar

  • Murge, M. G. and Pachpatte, B. G. (1986a). Explosion and asymptotic behavior of nonlinear Ito type stochastic integro-differential equations, Kodai Mathematical Journal 9(1): 1-18.CrossrefGoogle Scholar

  • Murge, M. G. and Pachpatte, B. G. (1986b). On generalized Ito type stochastic integral equation, Yokohama Mathematical Journal 34(1-2): 23-33.Google Scholar

  • Rao, A. N. V. and Tsokos, C. P. (1995). Stability of impulsive stochastic differential systems, Dynamical Systems and Applications 4(4): 317-327.Google Scholar

  • Respondek, J. (2005). Numerical approach to the non-linear diofantic equations with applications to the controllability of infinite dimensional dynamical systems, International Journal of Control 78(13): 1017-1030.CrossrefGoogle Scholar

  • Respondek, J. S. (2007). Numerical analysis of controllability of diffusive-convective system with limited manipulating variables, International Communications in Heat and Mass Transfer 34(8): 934-944.CrossrefWeb of ScienceGoogle Scholar

  • Respondek, J. S. (2008). Approximate controllability of infinite dimensional systems of the n-th order, International Journal of Applied Mathematics and Computer Science 18(2): 199-212.Web of ScienceGoogle Scholar

  • Sakthivel, R., Kim, J. H. and Mahmudov, N. I. (2006). On controllability of nonlinear stochastic systems, Reports on Mathematical Physics 58(3): 433-443.CrossrefWeb of ScienceGoogle Scholar

  • Samoilenko, A. M. and Perestyuk, N. A. (1995). Impulsive Differential Equations, World Scientific, Singapore.Google Scholar

  • Sunahara, Y., Kabeuchi, T., Asad, Y., Aihara, S. and Kishino, K. (1974). On stochastic controllability for nonlinear systems, IEEE Transactions on Automatic Control 19(1): 49-54.CrossrefGoogle Scholar

  • Yang, Z., Xu, D. and Xiang, L. (2006). Exponential p-stability of impulsive stochastic differential equations with delays, Physics Letters A 359(2): 129-137.CrossrefGoogle Scholar

About the article


Published Online: 2009-12-31

Published in Print: 2009-12-01


Citation Information: International Journal of Applied Mathematics and Computer Science, ISSN (Print) 1641-876X, DOI: https://doi.org/10.2478/v10006-009-0046-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xisheng Dai and Feng Yang
Abstract and Applied Analysis, 2013, Volume 2013, Page 1
[2]
N. I. Mahmudov
Abstract and Applied Analysis, 2013, Volume 2013, Page 1
[3]
Ravikumar Sathya and Krishnan Balachandran
Vietnam Journal of Mathematics, 2013, Volume 41, Number 1, Page 59
[4]
S. Karthikeyan and K. Balachandran
International Journal of Systems Science, 2013, Volume 44, Number 1, Page 67

Comments (0)

Please log in or register to comment.
Log in