Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

4 Issues per year


IMPACT FACTOR 2016: 1.420
5-year IMPACT FACTOR: 1.597

CiteScore 2016: 1.81

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 1.440

Mathematical Citation Quotient (MCQ) 2016: 0.08

Open Access
Online
ISSN
2083-8492
See all formats and pricing
More options …
Volume 20, Issue 4 (Dec 2010)

Issues

Efficient online handwritten Chinese character recognition system using a two-dimensional functional relationship model

Yun Chang
  • Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jia Lee
  • Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Omar Rijal / Syed Bakar
Published Online: 2010-12-20 | DOI: https://doi.org/10.2478/v10006-010-0055-x

Efficient online handwritten Chinese character recognition system using a two-dimensional functional relationship model

This paper presents novel feature extraction and classification methods for online handwritten Chinese character recognition (HCCR). The X-graph and Y-graph transformation is proposed for deriving a feature, which shows useful properties such as invariance to different writing styles. Central to the proposed method is the idea of capturing the geometrical and topological information from the trajectory of the handwritten character using the X-graph and the Y-graph. For feature size reduction, the Haar wavelet transformation was applied on the graphs. For classification, the coefficient of determination (R2p) from the two-dimensional unreplicated linear functional relationship model is proposed as a similarity measure. The proposed methods show strong discrimination power when handling problems related to size, position and slant variation, stroke shape deformation, close resemblance of characters, and non-normalization. The proposed recognition system is applied to a database with 3000 frequently used Chinese characters, yielding a high recognition rate of 97.4% with reduced processing time of 75.31%, 73.05%, 58.27% and 40.69% when compared with recognition systems using the city block distance with deviation (CBDD), the minimum distance (MD), the compound Mahalanobis function (CMF) and the modified quadratic discriminant function (MQDF), respectively. High precision rates were also achieved.

Keywords: 2D functional classifier; coefficient of determination; handwritten Chinese character recognition; Haar wavelet; multidimensional functional relationship model

  • Battaglia, G. J. (1996). Mean square error, AMP Journal of Technology 5(1): 31-36.Google Scholar

  • Casey, R. G. (1970). Moment normalization of handprinted character, IBM Journal of Research and Development 14(5): 548-557.CrossrefGoogle Scholar

  • Chang, Y. F., Rijal, O. M. and Abu Bakar, S. A. R. (2010). Multidimensional unreplicated linear functional relationship model with single slope and its coefficient of determination, WSEAS Transactions on Mathematics 9(5): 295-C313.Google Scholar

  • Dan, J. (2004). Modern Chinese Character Frequency List http://lingua.mtsu.edu/chinesecomputing/statistics/char/list.php?Which=MO

  • Deepu, V., Sriganesh, M. and Ramakrishnan, A. G. (2004). Principal component analysis for online handwritten character recognition, Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, Vol. 2, pp. 327-330.Google Scholar

  • Dong, J. X., Krzyżak, A. and Suen, C. Y. (2005). An improved handwritten Chinese character recognition system using support vector machine, Pattern Recognition Letters 26(12): 1849-1856.CrossrefGoogle Scholar

  • Fujarewicz, K. and Wiench, M. (2003). Selecting differentially expressed genes for colon tumor classification, International Journal of Applied Mathematics and Computer Science 13(3): 327-335.Google Scholar

  • Gao, T. F. and Liu, C. L. (2008). High accuracy handwritten Chinese character recognition using LDA-based compound distances, Pattern Recognition 41(11): 3442-3451.CrossrefGoogle Scholar

  • Gao, X., Jin, L. W., Yin, J. X. and Huang, J. C. (2002). SVM-based handwritten Chinese character recognition, Chinese Journal of Electronics 30(5): 651-654.Google Scholar

  • Gonzalez, R. C. and Woods, R. E. (1993). Digital Image Processing, Addison-Wesley Publishing Co., New York, NJ, pp. 580-583.Google Scholar

  • Horiuchi, T., Haruki, R., Yamada, H. and Yamamoto, K. (1997). Two-dimensional extension of nonlinear normalization method using line density for character recognition, Proceedings of the 4th International Conference on Document Analysis and Recognition, Ulm, Germany, pp. 511-514.Google Scholar

  • Huang, L. and Huang, X. (2001). Multiresolution recognition of offline handwritten Chinese characters with wavelet transform, Proceedings of the 6th International Conference on Document Analysis and Recognition, Washington, DC, USA, pp. 631-634.Google Scholar

  • Kato, N., Suzuki, M., Omachi, S. I., Aso, H. and Nemoto, Y. (1999). A handwritten character recognition system using directional element feature and asymmetric Mahalanobis distance, IEEE Transactions on Pattern Analysis and Machine Intelligence 21(3): 258-262.CrossrefGoogle Scholar

  • Kawamura, A., Yura, K., Hayama, T., Hidai, Y., Minamikawa, T., Tanaka, A. and Masuda, S. (1992). On-line recognition of freely handwritten Japanese characters using directional feature densities, Proceedings of the 11th International Conference on Pattern Recognition, The Hague, the Netherlands, Vol. 2, pp. 183-186.Google Scholar

  • Kimura, F., Takashina, K., Tsuruoka, S. and Miyake, Y. (1987). Modified quadratic discriminant functions and its application to Chinese character recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 9(1): 149-153.CrossrefGoogle Scholar

  • Kimura, F., Wakabayashi, T., Tsuruoka, S. and Mayake, Y. (1997). Improvement of handwritten Japanese character recognition using weighted direction code histogram, Pattern Recognition 30(8): 1329-1337.CrossrefGoogle Scholar

  • Liu, C. L. and Marukawa, K. (2004). Global shape normalization for handwritten Chinese character recognition: A new method, Proceedings of the 9th International Workshop on Frontiers of Handwriting Recognition, Tokyo, Japan, pp. 300-305.Google Scholar

  • Liu, C. L. and Marukawa, K. (2005). Pseudo two-dimensional shape normalization methods for handwritten Chinese character recognition, Pattern Recognition 38(12): 2242-2255.CrossrefGoogle Scholar

  • Liu, C. L., Jaeger, S. and Nakagawa, M. (2004). Online recognition of Chinese characters: The-state-of-the art, IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2): 198-213.Google Scholar

  • Liu, C. L., Mine, R. and Koga, M. (2005). Building compact classifier for large character set recognition using discriminative feature extraction, Proceedings of the 8th ICDAR, Seoul, Korea, pp. 846-850.Google Scholar

  • Liu, C. L., Sako, H. and Fujisawa, H. (2003). Handwritten Chinese character recognition: Alternatives to nonlinear normalization, Proceedings of the 7th International Conference on Document Analysis and Recognition, Edinburgh, UK, pp. 524-528.Google Scholar

  • Liu, H. and Ding, X. (2005). Handwritten character recognition using gradient feature and quadratic classifiers with multiple discrimination schemes, Proceedings of the 8th ICDAR, Seoul, Korea, pp. 19-23.Google Scholar

  • Liu, J. Z., Cham, W. K. and Chang, M. M. Y. (1996). Online Chinese character recognition using attributed relational graph matching, IEE Proceedings: Vision, Image, Signal Processing 143(2): 125-131.Google Scholar

  • Long, T. and Jin, L. W. (2008). Building compact MQDF classifier for large character set recognition by subspace distribution sharing, Pattern Recognition 41(9): 2916-2925.Web of ScienceCrossrefGoogle Scholar

  • Michalak, K. and Kwaśnicka, H. (2006). Correlation-based feature selection strategy in classification problems, International Journal of Applied Mathematics and Computer Science 16(4): 503-511.Google Scholar

  • Miquelez, T., Bengoetxea, E. and Larranaga, P. (2004). Evolutionary computation based on Bayesian classifiers, International Journal of Applied Mathematics and Computer Science 14(3): 335-349.Google Scholar

  • Ritter, G. X. and Wilson, J. N. (2001). Handbook of Computer Vision Algorithms in Image Algebra, CRC Press LLC, Boca Raton, FL, pp. 225-228.Google Scholar

  • Romero, R., Berger, R., Thibadeau, R. and Touretsky, D. (1995). Neural network classifiers for optical Chinese character recognition, Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, NV, USA, pp. 385-398.Google Scholar

  • Saeed, K. (2000). A projection approach for Arabic handwritten characters recognition, in P. Sincak and J. Vascak (Eds.), Quo Vadis Computational Intelligence? New Trends and Approaches in Computational Intelligence, Physica-Verlag, Berlin, pp. 106-111.Google Scholar

  • Shimodaira, H., Sudo, T., Nakai, M. and Sagayama, S. (2003). On-line overlaid-handwriting recognition based on substroke HMMs, Proceedings of the 7th International Conference on Document Analysis and Recognition, Edinburgh, UK, Vol. 2, p. 1043.Google Scholar

  • Shioyama, T., Wu, H. Y. and Nojima, T. (1998). Recognition algorithm based on wavelet transform for handprinted Chinese characters, Proceedings of the 14th International Conference on Pattern Recognition, Hong Kong, China, Vol. 1, pp. 229-232.Google Scholar

  • Suzuki, M., Ohmachi, S., Kato, N., Aso, H. and Nemoto, Y. (1997). A discrimination method of similar characters using compound Mahalanobis function, IEICE Transactions on Information and Systems J80-D(10): 2752-2760.Google Scholar

  • Świniarski, R. W. (2001). Rough sets methods in feature reduction and classification, International Journal of Applied Mathematics and Computer Science 11(3): 565-582.Web of ScienceGoogle Scholar

  • Takahashi, K., Yasuda, H. and Matsumoto, T. (1997). A fast HMM algorithm for on-line handwritten character recognition, Proceedings of the 4th International Conference on Document Analysis and Recognition, Ulm, Germany, pp. 369-375.Google Scholar

  • Van der Weken, D., Nachtegael, M. and Kerre, E. E. (2002). Image quality evaluation, Proceedings of the 6th International Conference on Signal Processing, Beijing, China, Vol. 1, pp. 711-714.Google Scholar

  • Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing 13(4): 600-612.Web of ScienceCrossrefGoogle Scholar

  • Zheng, J., Ding, X. and Wu, Y. (1997). Recognizing online handwritten Chinese character via FARG matching, Proceedings of the 4th International Conference on Document Analysis and Recognition, Ulm, Germany, Vol. 2, pp. 621-624.Google Scholar

About the article


Published Online: 2010-12-20

Published in Print: 2010-12-01


Citation Information: International Journal of Applied Mathematics and Computer Science, ISSN (Print) 1641-876X, DOI: https://doi.org/10.2478/v10006-010-0055-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ali Sever
Applied Computing and Informatics, 2015, Volume 11, Number 1, Page 1
[2]
Krzysztof Gdawiec and Diana Domańska
International Journal of Applied Mathematics and Computer Science, 2011, Volume 21, Number 4

Comments (0)

Please log in or register to comment.
Log in