Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

4 Issues per year


IMPACT FACTOR 2016: 1.420
5-year IMPACT FACTOR: 1.597

CiteScore 2016: 1.81

SCImago Journal Rank (SJR) 2015: 1.025
Source Normalized Impact per Paper (SNIP) 2015: 1.674

Mathematical Citation Quotient (MCQ) 2015: 0.07

Open Access
Online
ISSN
2083-8492
See all formats and pricing
In This Section
Volume 21, Issue 2 (Jun 2011)

Issues

Data intensive scientific analysis with grid computing

Olivier Terzo
  • ARCAS—Advanced Research on Computing Architectures, Security Istituto Superiore Mario Boella, Via P. C. Boggio 61, Torino, Italy
/ Lorenzo Mossucca
  • ARCAS—Advanced Research on Computing Architectures, Security Istituto Superiore Mario Boella, Via P. C. Boggio 61, Torino, Italy
/ Manuela Cucca
  • Department of Electronics (DELEN) Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy
/ Riccardo Notarpietro
  • Department of Electronics (DELEN) Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy
Published Online: 2011-06-22 | DOI: https://doi.org/10.2478/v10006-011-0016-z

Data intensive scientific analysis with grid computing

At the end of September 2009, a new Italian GPS receiver for radio occultation was launched from the Satish Dhawan Space Center (Sriharikota, India) on the Indian Remote Sensing OCEANSAT-2 satellite. The Italian Space Agency has established a set of Italian universities and research centers to implement the overall processing radio occultation chain. After a brief description of the adopted algorithms, which can be used to characterize the temperature, pressure and humidity, the contribution will focus on a method for automatic processing these data, based on the use of a distributed architecture. This paper aims at being a possible application of grid computing for scientific research.

Keywords: grid computing; GPS radio occultation; scheduler; agent; e-science

  • ASI (2010). Italian Space Agency http://www.asi.it/

  • Berman, F., Fox, G. and Hey A. (2003). Grid Computing Making the Global Infrastructure a Reality, Wiley, Chichester, pp. 117-170.

  • Buyya, R., Abramson, D. and Giddy, J. (2000). NIMROD/G: An architeture of a resource management and scheduling system in a global computational grid, High Performance Computing Asia 2000, Beijing, China, pp. 283-289.

  • Dimitriadou, S. and Karatza, H. (2010). Job scheduling in a distributed system using backfilling with inaccurate runtime computation, International Conference on Complex, Intelligent and Software Intensive System, Washington, DC, USA, pp. 329-336.

  • Foster, I. and Kesselman C. (2003). The Grid 2: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, San Francisco, CA, pp. 38-63.

  • Globus (2010a). The globus alliance http://www.globus.org/

  • Globus (2010b). The globus consortium http://www.globusconsortium.org/

  • Gradwell, P. (2002). Grid scheduling with agents, Proceedings of the Second International Joint Conference on Autonomous Agents & Multi-Agent Systems (AAMAS 2003), Melbourne, Australia, pp. 229-245.

  • ISRO (2010). Indian space research organization http://www.isro.org/

  • Kurowski, K., Nabrzyski, J.,A., Oleksiak, A. and Weglarz, J. (2006). Scheduling jobs on the grid multicriteria approach, Computational Methods in Science and Technology12(2): 123-138.

  • Kursinski, E.R., Hajj, G.A., Schofield J.T., Linfield R.P., and Hardy K.R. (1997). Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, Journal of Geophysical Research102(D19): 23.429-23.465.

  • Leonid O., Rupak B., Hongzhang S. and Warren S. (2004). Job scheduling in a heterogeneous grid environment, Lawrence Berkeley National Laboratory http://www.escholarship.org/uc/item/6659c4xj

  • Luntama, J.P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., von Engeln, A., O'Clerigh, E. and Marquardt, C. (2008). Prospects of the EPS GRAS mission for operational atmospheric applications, Bulletin of the American Meteorological Society89(12): 1863. [Web of Science] [Crossref]

  • Melbourne, W.G., Davis, E.S., Duncan, C.B., Hajj, G.A., Hardy, K.R., Kursinski, E.R., Meehan, T.K., Young, L.E. and Yunck T.P. (1994). The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publication, pp: 18-94.

  • Wickert J., Schmidt T., Beyerle G., Knig R., Reigber C. and Jakowski N. (2004). The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles, Journal of the Meteorological Society of Japan82(1B): 381-395.

About the article


Published Online: 2011-06-22

Published in Print: 2011-06-01



Citation Information: International Journal of Applied Mathematics and Computer Science, ISSN (Print) 1641-876X, DOI: https://doi.org/10.2478/v10006-011-0016-z. Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Grzegorz Chmaj, Krzysztof Walkowiak, Michał Tarnawski, and Michał Kucharzak
International Journal of Applied Mathematics and Computer Science, 2012, Volume 22, Number 3

Comments (0)

Please log in or register to comment.
Log in