Jump to ContentJump to Main Navigation
Show Summary Details

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

4 Issues per year

IMPACT FACTOR 2015: 1.037
5-year IMPACT FACTOR: 1.151
Rank 83 out of 254 in category Applied Mathematics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 1.025
Source Normalized Impact per Paper (SNIP) 2015: 1.674
Impact per Publication (IPP) 2015: 1.648

Mathematical Citation Quotient (MCQ) 2014: 0.07

Open Access
See all formats and pricing
Volume 22, Issue 1 (Mar 2012)


LPV design of fault-tolerant control for road vehicles

Péter Gáspár
  • Systems and Control Laboratory, Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u. 13-17, Budapest, H-1111, Hungary
/ Zoltán Szabó
  • Systems and Control Laboratory, Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u. 13-17, Budapest, H-1111, Hungary
/ József Bokor
  • Systems and Control Laboratory, Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u. 13-17, Budapest, H-1111, Hungary
Published Online: 2012-03-22 | DOI: https://doi.org/10.2478/v10006-012-0013-x

LPV design of fault-tolerant control for road vehicles

The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able to make decisions about necessary interventions into the vehicle motions and guarantee reconfigurable and fault-tolerant operation of the vehicle. The design of the proposed reconfigurable and fault-tolerant control is based on an LPV method that uses monitored scheduling variables during the operation of the vehicle.

Keywords: robust control; fault detection; LPV systems; faut-tolerant control; vehicle dynamics; vehicle control

  • Balas, G., Bokor, J. and Szabo, Z. (2003). Invariant subspaces for LPV systems and their applications, IEEE Transactions on Automatic Control 48(11): 2065-2069. [Crossref]

  • Bokor, J. and Balas, G. (2004). Detection filter design for LPV systems—A geometric approach, Automatica 40(3): 511-518. [Crossref]

  • Bokor, J. and Balas, G. (2005). Linear parameter varying systems: A geometric theory and applications, 16th IFAC World Congress, Prague, Czech Republic, pp. 1-11.

  • Chen, J. and Patton, R. J. (1999). Robust Model-based Fault Diagnosis for Dynamic Systems, Kluwer Academic, Boston, MA.

  • de Wit, C. C., Tsiotras, P., Claeys, X., Yi, J. and Horowitz, R. (2003). Friction tire/road modelling, estimation and optimal braking control, in R. Johansson and A. Rantzer (Eds.) Nonlinear and Hybrid Systems in Automotive Control, Lecture Notes in Control and Information Science, Springer-Verlag, London, pp. 125-146.

  • Edelmayer, A., Bokor, J., Szabo, Z. and Szigeti, F. (2004). Input reconstruction by means of system inversion: A geometric approach to fault detection and isolation in nonlinear systems, International Journal of Applied Mathematics and Computer Science 14(2): 189-199.

  • Fischer, D. and Isermann, R. (2004). Mechatronic semi-active and active vehicle suspensions, Control Engineering Practice 12(11): 1353-1367. [Web of Science] [Crossref]

  • Gertler, J. J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel and Dekker, New York, NY.

  • Gillespie, T. (1992). Fundamentals of Vehicle Dynamics, Society of Automotive Engineers Inc., Warrendale, PA.

  • Gordon, T., Howell, M. and Brandao, F. (2003). Integrated control methodologies for road vehicles, Vehicle System Dynamics 40(1-3): 157-190. [Crossref]

  • Grenaille, S., Henry, D. and Zolghadri, A. (2008). A method for designing fault diagnosis filters for LPV polytopic systems, Journal of Control Science and Engineering, Article ID 231697.

  • Gáspár, P., Szab, Z. and Bokor, J. (2010). Brake control using a prediction method to reduce rollover risk, International Journal of Vehicle Autonomous Systems 8(2/3): 126-145.

  • Gáspár, P., Szászi, I. and Bokor, J. (2003a). Active suspension design using linear parameter varying control, International Journal of Vehicle Autonomous Systems 1(2): 206-221.

  • Gáspár, P., Szászi, I. and Bokor, J. (2003b). The design of a combined control structure to prevent the rollover of heavy vehicles, European Journal of Control 10(2): 1-15.

  • Hencey, B. and Alleyne, A. (2010). A robust controller interpolation design technique, IEEE Transactions on Control Systems Technology 18(1): 1-10. [Crossref] [Web of Science]

  • Henry, D. and Zolghadri, A. (2004). Robust fault diagnosis in uncertain linear parameter-varying systems, Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, The Hague, The Netherlands, pp. 5165-5170.

  • Kanev, S. and Verhaegen, M. (2000). Controller reconfiguration for non-linear systems, Control Engineering Practice 8(11): 1223-1235. [Crossref]

  • Lu, J. and Filev, D. (2009). Multi-loop interactive control motivated by driver-in-the-loop vehicle dynamics controls: The framework, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, pp. 3569-3574.

  • Muenchhof, M., Beck, M. and Isermann, R. (2009). Fault-tolerant actuators and drives structures, fault detection principles and applications, Annual Reviews in Control 33(2): 136-148. [Web of Science] [Crossref]

  • Packard, A. and Balas, G. (1997). Theory and application of linear parameter varying control techniques, Proceedings of the American Control Conference, Albuquerque, NM, USA.

  • Palkovics, L. and Fries, A. (2001). Intelligent electronic systems in commercial vehicles for enhanced traffic safety, Vehicle System Dynamics 35(4-5): 227-289. [Crossref]

  • Rank, M. and Niemann, H. (1999). Norm based design of fault detectors, International Journal of Control 72(9): 773-783. [Crossref]

  • Rodrigues, M., Theilliol, D., Aberkane, S. and Sauter, D. (2007). Fault tolerant control design for polytopic LPV systems, International Journal of Applied Mathematics and Computer Science 17(1): 27-37, DOI: 10.2478/v10006-007-0004-5. [Crossref]

  • Scherer, C. W. (2001). LPV control and full block multipliers, Automatica 27(3): 325-485.

  • Shumsky, A. and Zhirabok, A. (2006). Nonlinear diagnostic filter design: Algebraic and geometric points of view, International Journal of Applied Mathematics and Computer Science 16(1): 115-127.

  • Song, C., Uchanski, M. and Hedrick, J. (2002). Vehicle speed estimation using accelerometer and wheel speed measurements, Proceedings of the SAE Automotive Transportation Technology, Paris, France, pp. 1-8.

  • Theilliol, D., Join, C. and Zhang, Y. (2008). Actuator fault tolerant control design based on a reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553-560, DOI: 10.2478/v10006-008-0048-1. [Crossref] [Web of Science]

  • Trachtler, A. (2004). Integrated vehicle dynamics control using active brake, steering and suspension systems, International Journal of Vehicle Design 36(1): 1-12. [Crossref]

  • Varga, A. (2008). On computing nullspace bases—A fault detection perspective, Proceedings of the 17th World Congress of the International Federation of Automatic Control, Seoul, Korea, pp. 6296-6300.

  • Wu, F. (2001). A generalized LPV system analysis and control synthesis framework, International Journal of Control 74(7): 745-759. [Crossref]

  • Wu, F., Yang, X., Packard, A. and Becker, G. (1996). Induced L2 norm controller for LPV systems with bounded parameter variation rates, International Journal of Robust and Nonlinear Control 6(9-10): 983-988.

  • Yu, F., Li, D. and Crolla, D. (2008). Integrated vehicle dynamics control: State-of-the art review, IEEE Vehicle Power and Propulsion Conference, Harbin, China, pp. 1-6.

  • Zin, A., Sename, O., Gáspár, P. and Bokor, J. (2006). An LPV/Hinf active suspension control for global chassis technology: Design and performance analysis, Vehicle System Dynamics 46(10): 889-912.

About the article

Published Online: 2012-03-22

Published in Print: 2012-03-01

Citation Information: International Journal of Applied Mathematics and Computer Science, ISSN (Print) 1641-876X, DOI: https://doi.org/10.2478/v10006-012-0013-x. Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tamás Péni, Bálint Vanek, Zoltán Szabó, and József Bokor
International Journal of Applied Mathematics and Computer Science, 2015, Volume 25, Number 1

Comments (0)

Please log in or register to comment.
Log in