Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

4 Issues per year


IMPACT FACTOR 2016: 1.420
5-year IMPACT FACTOR: 1.597

CiteScore 2016: 1.81

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 1.440

Mathematical Citation Quotient (MCQ) 2016: 0.08

Open Access
Online
ISSN
2083-8492
See all formats and pricing
More options …
Volume 26, Issue 1 (Mar 2016)

Issues

Efficient generation of 3D surfel maps using RGB–D sensors

Artur Wilkowski
  • Corresponding author
  • Industrial Research Institute for Automation and Measurements, Al. Jerozolimskie 202, 02-486 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Kornuta
  • Institute of Control and Computation Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maciej Stefańczyk
  • Institute of Control and Computation Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Włodzimierz Kasprzak
  • Institute of Control and Computation Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-31 | DOI: https://doi.org/10.1515/amcs-2016-0007

Abstract

The article focuses on the problem of building dense 3D occupancy maps using commercial RGB-D sensors and the SLAM approach. In particular, it addresses the problem of 3D map representations, which must be able both to store millions of points and to offer efficient update mechanisms. The proposed solution consists of two such key elements, visual odometry and surfel-based mapping, but it contains substantial improvements: storing the surfel maps in octree form and utilizing a frustum culling-based method to accelerate the map update step. The performed experiments verify the usefulness and efficiency of the developed system.

Keywords: RGB-D; V-SLAM; surfel map; frustum culling; octree

References

  • Alahi, A., Ortiz, R. and Vandergheynst, P. (2012). FREAK: Fast retina keypoint, 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, pp. 510–517.Google Scholar

  • Calonder, M., Lepetit, V., Strecha, C. and Fua, P. (2010). BRIEF: Binary robust independent elementary features, Computer VisionECCV 2010, Heraklion, Greece, pp. 778–792.Google Scholar

  • Censi, A. (2008). An ICP variant using a point-to-line metric, IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena, CA, USA, pp. 19–25.Google Scholar

  • Clark, J.H. (1976). Hierarchical geometric models for visible surface algorithms, Communications of the ACM 19(10): 547–554.CrossrefGoogle Scholar

  • Dryanovski, I., Valenti, R. and Xiao, J. (2013). Fast visual odometry and mapping from RGB-D data, 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 2305–2310.Google Scholar

  • Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D. and Burgard, W. (2012). An evaluation of the RGB-D SLAM system, 2012 IEEE International Conference on Robotics and Automation (ICRA), St Paul, MN, USA, pp. 1691–1696.Google Scholar

  • Figat, J., Kornuta, T. and Kasprzak, W. (2014). Performance evaluation of binary descriptors of local features, in L.J. Chmielewski et al. (Eds.), Proceedings of the International Conference on Computer Vision and Graphics, Lecture Notes in Computer Science, Vol. 8671, Springer, Berlin/Heidelberg, pp. 187–194.Google Scholar

  • Fischler, M.A. and Bolles, R.C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM 24(6): 381–395.CrossrefGoogle Scholar

  • Frome, A., Huber, D., Kolluri, R., Bülow, T. and Malik, J. (2004). Recognizing objects in range data using regional point descriptors, Computer Vision (ECCV 2004), Prague, Czech Republic, pp. 224–237.Google Scholar

  • Gribb, G. and Hartmann, K. (2001). Fast extraction of viewing frustum planes from the world-view-projection, http://gamedevs.org.

  • Handa, A., Whelan, T., McDonald, J. and Davison, A.J. (2014). A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM, 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp. 1524–1531.Google Scholar

  • Henry, P., Krainin, M., Herbst, E., Ren, X. and Fox, D. (2012). RGB-D mapping: Using kinect-style depth cameras for dense 3D modeling of indoor environments, International Journal of Robotic Research 31(5): 647–663.CrossrefGoogle Scholar

  • Henry, P., Krainin, M., Herbst, E., Ren, X. and Fox, D. (2014). RGBD mapping: Using depth cameras for dense 3D modeling of indoor environments, in O. Khatib et al. (Eds.), Experimental Robotics, Springer, Berlin/Heidelberg, pp. 477–491.CrossrefGoogle Scholar

  • Holzer, S., Rusu, R., Dixon, M., Gedikli, S. and Navab, N. (2012). Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images, Intelligent Robots and Systems (IROS), Vilamoura-Algarve, Portugal, pp. 2684–2689.Google Scholar

  • Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C. and Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees, Autonomous Robots 34(3): 189–206.CrossrefGoogle Scholar

  • Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A. and Fitzgibbon, A. (2011). KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera, Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST’11, Santa Barbara, CA, USA, pp. 559–568.Google Scholar

  • Kasprzak, W. (2010). Integration of different computational models in a computer vision framework, 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), Cracow, Poland, pp. 13–18.Google Scholar

  • Kasprzak, W., Pietruch, R., Bojar, K., Wilkowski, A. and Kornuta, T. (2015). Integrating data- and model-driven analysis of RGB-D images, in D. Filev et al. (Eds.), Proceedings of the 7th IEEE International Conference Intelligent Systems IS’2014, Advances in Intelligent Systems and Computing, Vol. 323, Springer, Berlin/Heidelberg, pp. 605–616.Google Scholar

  • Kawewong, A., Tongprasit, N. and Hasegawa, O. (2013). A speeded-up online incremental vision-based loop-closure detection for long-term SLAM, Advanced Robotics 27(17): 1325–1336.CrossrefGoogle Scholar

  • Konolige, K. (2010). Sparse bundle adjustment, Proceedings of the British Machine Vision Conference, Aberystwyth, UK, pp. 102.1–102.11, DOI: 10.5244/C.24.102.CrossrefGoogle Scholar

  • Konolige, K., Agrawal, M. and Sola, J. (2011). Large-scale visual odometry for rough terrain, in M. Kaneko and Y. Nakamura (Eds.), Robotics Research, Springer, Berlin/Heidelberg, pp. 201–212.Google Scholar

  • Koshy, G. (2014). Calculating OpenGL perspective matrix from opencv intrinsic matrix, http://kgeorge.github.io.

  • Krainin, M., Henry, P., Ren, X. and Fox, D. (2010). Manipulator and object tracking for in hand 3D object modeling, Technical Report UW-CSE-10-09-01, University of Washington, Seattle, WA.Google Scholar

  • Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K. and Burgard, W. (2011). g2o: A general framework for graph optimization, 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 3607–3613.Google Scholar

  • Leutenegger, S., Chli, M. and Siegwart, R. (2011). Brisk: Binary robust invariant scalable keypoints, 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, pp. 2548–2555.Google Scholar

  • Lowe, D.G. (1999). Object recognition from local scale-invariant features, Proceedings of the International Conference on Computer Vision, ICCV’99, Kerkyra, Greece, Vol. 2, pp. 1150–1157.Google Scholar

  • Luck, J., Little, C. and Hoff, W. (2000). Registration of range data using a hybrid simulated annealing and iterative closest point algorithm, ICRA’00: IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, Vol. 4, pp. 3739–3744.Google Scholar

  • Łępicka, M., Kornuta, T. and Stefańczyk, M. (2016). Utilization of colour in ICP-based point cloud registration, in R. Burduk et al. (Eds.), Proceedings of the 9th International Conference on Computer Recognition Systems (CORES 2015), Advances in Intelligent Systems and Computing, Vol. 403, Springer, Berlin/Heidelberg, pp. 821–830.Google Scholar

  • Mair, E., Hager, G.D., Burschka, D., Suppa, M. and Hirzinger, G. (2010). Adaptive and generic corner detection based on the accelerated segment test, Computer Vision (ECCV 2010), Hersonissos, Greece, pp. 183–196.Google Scholar

  • Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B. and Konolige, K. (2010). The office marathon: Robust navigation in an indoor office environment, 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, pp. 300–307.Google Scholar

  • Martínez Mozos, O., Triebel, R., Jensfelt, P., Rottmann, A. and Burgard, W. (2007). Supervised semantic labeling of places using information extracted from sensor data, Robotics and Autonomous Systems 55(5): 391–402.CrossrefGoogle Scholar

  • May, S., Dröschel, D., Fuchs, S., Holz, D. and Nuchter, A. (2009). Robust 3D-mapping with time-of-flight cameras, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, St. Louis, MO, USA, pp. 1673–1678.Google Scholar

  • Men, H., Gebre, B. and Pochiraju, K. (2011). Color point cloud registration with 4D ICP algorithm, 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 1511–1516.Google Scholar

  • Miksik, O. and Mikolajczyk, K. (2012). Evaluation of local detectors and descriptors for fast feature matching, 21st International Conference on Pattern Recognition (ICPR), Tsukuba, Japan, pp. 2681–2684.Google Scholar

  • Muja, M. and Lowe, D.G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration, International Conference on Computer Vision Theory and Application VISSAPP’09, Lisbon, Portugal, pp. 331–340.Google Scholar

  • Muja, M. and Lowe, D.G. (2012). Fast matching of binary features, 9th Conference on Computer and Robot Vision (CRV), Toronto, Canada, pp. 404–410.Google Scholar

  • Nistér, D., Naroditsky, O. and Bergen, J. (2004). Visual odometry, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, Washington, DC, USA, Vol. 1, pp. I–652.Google Scholar

  • Nowicki, M. and Skrzypczyński, P. (2014). Performance comparison of point feature detectors and descriptors for visual navigation on android platform, 2014 International Wireless Communications and Mobile Computing Conference (IWCMC), Nicosia, Cyprus, pp. 116–121.Google Scholar

  • Pfister, H., Zwicker, M., van Baar, J. and Gross, M. (2000). Surfels: Surface elements as rendering primitives, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’00, New Orleans, LA, USA, pp. 335–342.Google Scholar

  • Pomerleau, F., Colas, F., Siegwart, R. and Magnenat, S. (2013). Comparing ICP variants on real-world data sets, Autonomous Robots 34(3): 133–148.CrossrefGoogle Scholar

  • Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R. and Ng, A. (2009). ROS: An open-source robot operating system, Proceedings of the Open-Source Software Workshop at the International Conference on Robotics and Automation (ICRA), Kobe, Japan.Google Scholar

  • Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection, in A. Leonardis et al. (Eds.), Computer Vision—ECCV 2006, Lecture Notes in Computer Science, Vol. 3951, Springer, Berlin/Heidelberg, pp. 430–443.Google Scholar

  • Rusu, R.B., Bradski, G., Thibaux, R. and Hsu, J. (2010). Fast 3D recognition and pose using the viewpoint feature histogram, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, pp. 2155–2162.Google Scholar

  • Rusu, R.B. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL), International Conference on Robotics and Automation, Shanghai, China, pp. 1–4.Google Scholar

  • Shi, J. and Tomasi, C. (1994). Good features to track, 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR’94, Seattle, WA, USA, pp. 593–600.Google Scholar

  • Sipiran, I. and Bustos, B. (2011). Harris 3D: A robust extension of the Harris operator for interest point detection on 3D meshes, The Visual Computer 27(11): 963–976.Google Scholar

  • Skrzypczyński, P. (2009). Simultaneous localization and mapping: A feature-based probabilistic approach, International Journal of Applied Mathematics and Computer Science 19(4): 575–588, DOI: 10.2478/v10006-009-0045-z.CrossrefGoogle Scholar

  • Song-Ho, A. (2013). OpenGL projection matrix, http://www.songho.ca/opengl/gl_projectionmatrix.html.

  • Steder, B., Rusu, R.B., Konolige, K. and Burgard, W. (2011). Point feature extraction on 3D range scans taking into account object boundaries, 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 2601–2608.Google Scholar

  • Thrun, S. and Leonard, J.J. (2008). Simultaneous localization and mapping, in B. Siciliano and O. Khatib (Eds.), Handbook of Robotics, Springer, Berlin/Heidelberg, pp. 871–890.Google Scholar

  • Tombari, F., Salti, S. and Di Stefano, L. (2010). Unique signatures of histograms for local surface description, in K. Daniilidis et al. (Eds.), Computer Vision—ECCV 2010, Lecture Notes in Computer Science, Vol. 6314, Springer-Verlag, Berlin/Heidelberg, pp. 356–369.Google Scholar

  • Tombari, F., Salti, S. and Di Stefano, L. (2011). A combined texture-shape descriptor for enhanced 3D feature matching, 18th IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, pp. 809–812.Google Scholar

  • Triebel, R., Pfaff, P. and Burgard, W. (2006). Multi-level surface maps for outdoor terrain mapping and loop closing, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2276–2282.Google Scholar

  • Weise, T., Wismer, T., Leibe, B. and Van Gool, L. (2009). In-hand scanning with online loop closure, IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan, pp. 1630–1637.Google Scholar

  • Whelan, T., Johannsson, H., Kaess, M., Leonard, J. and McDonald, J. (2013). Robust real-time visual odometry for dense RGB-D mapping, 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 5724–5731.Google Scholar

  • Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C. and Burgard, W. (2010). OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems, ICRA 2010 Workshop, Taipei, Taiwan.Google Scholar

  • Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces, International Journal of Computer Vision 13(2): 119–152.CrossrefGoogle Scholar

About the article

Received: 2014-11-13

Revised: 2015-05-01

Revised: 2015-08-24

Published Online: 2016-03-31

Published in Print: 2016-03-01


Citation Information: International Journal of Applied Mathematics and Computer Science, ISSN (Online) 2083-8492, DOI: https://doi.org/10.1515/amcs-2016-0007.

Export Citation

© 2016 Artur Wilkowski et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Emiliano Pérez, Santiago Salamanca, Pilar Merchán, and Antonio Adán
International Journal of Applied Mathematics and Computer Science, 2016, Volume 26, Number 4

Comments (0)

Please log in or register to comment.
Log in