Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mathematics and Computer Science

Journal of University of Zielona Gora and Lubuskie Scientific Society

4 Issues per year


IMPACT FACTOR 2016: 1.420
5-year IMPACT FACTOR: 1.597

CiteScore 2016: 1.81

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 1.440

Mathematical Citation Quotient (MCQ) 2016: 0.08

Open Access
Online
ISSN
2083-8492
See all formats and pricing
More options …
Volume 27, Issue 2 (Jun 2017)

Issues

Fault Detection in Nonlinear Systems Via Linear Methods

Alexey Zhirabok
  • Corresponding author
  • Department of Automation and Control Far Eastern Federal University, Sukhanova, 8, Vladivostok, 690990, Russian Federation
  • Department of Robotic Systems Institute of Marine Technology Problems, Sukhanova, 5, Vladivostok, 690990, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexey Shumsky
  • Department of Automation and Control Far Eastern Federal University, Sukhanova, 8, Vladivostok, 690990, Russian Federation
  • Department of Automatic Control Institute of Applied Mathematics, Radio, 5, Vladivostok, 690014, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey Solyanik
  • Department of Automation and Control Far Eastern Federal University, Sukhanova, 8, Vladivostok, 690990, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexey Suvorov
  • Department of Automation and Control Far Eastern Federal University, Sukhanova, 8, Vladivostok, 690990, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-08 | DOI: https://doi.org/10.1515/amcs-2017-0019

Abstract

The problem of robust linear and nonlinear diagnostic observer design is considered. A method is suggested to construct the observers that are disturbance decoupled or have minimal sensitivity to the disturbances. The method is based on a logic-dynamic approach which allows us to consider systems with non-differentiable nonlinearities in the state equations by methods of linear algebra.

Keywords: nonlinear dynamic systems; diagnostic observers; robustness; non-differentiable nonlinearities; logic-dynamic approach

References

  • Alcorta-Garcia, E. and Frank, P. (1997). Deterministic nonlinear observerbased approach to fault diagnosis: A survey, Control Engineering Practice 5(5): 663-670.CrossrefGoogle Scholar

  • Boulkroune, B., Djemili, I., Aitouche, A., and Cocquempot, V. (2013). Robust nonlinear observer design for actuator fault detection in diesel engines, International Journal of Applied Mathematics and Computer Science 23(3): 557-569, DOI: 10.2478/amcs-2013-0042.Web of ScienceCrossrefGoogle Scholar

  • Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer, Berlin.Google Scholar

  • Caccavale, F. and Villiani, L. (Eds.) (2002). Fault Diagnosis and Tolerance for Mechatronic Systems: Recent Advances, Springer, Berlin.Google Scholar

  • Ding, S. (2013). Model-Based Fault Diagnosis Techniques- Design Schemes, Algorithms and Tools, 2nd Edn., Springer, London.Google Scholar

  • Ducard, G.J.J. (2015). SMAC-FDI: A single model active fault detection and isolation system for unmanned aircraft, International Journal of Applied Mathematics and Computer Science 25(1): 189-201, DOI: 10.1515/amcs-2015-0014.Web of ScienceCrossrefGoogle Scholar

  • Filaretov V., Vukobratovic M., and Zhirabok A. (2003). Parity relation approach to fault diagnosis in manipulation robots, Mechatronics 13(2): 141-152.CrossrefGoogle Scholar

  • Filaretov, V. and Zhirabok, A. (2006). Logic-dynamic approach to fault diagnosis in mechatronic systems, International Journal of Advanced Robotic Systems 3(4): 285-294.CrossrefGoogle Scholar

  • Frank, P. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-A survey and some new results, Automatica 26(3): 459-474.CrossrefGoogle Scholar

  • Gertler, J. (1993). Residual generation in model-based fault diagnosis, Theory and Advanced Technology 9(1): 259-285.Google Scholar

  • Low, X. and Willsky, A. and Verghese, G. (1996). Optimally robust redundancy relations for failure detection in uncertain systems, Automatica 22(3): 333-344.Google Scholar

  • Patton, R. (1994). Robust model-based fault diagnosis: The state of the art, IFAC Symposium SAFEPROCESS’2004, Espoo, Finland, pp. 1-24.Google Scholar

  • Patton, R., Frank, P. and Clark, R. (2000). Issues of Fault Diagnosis for Dynamic Systems, Springer, London.Google Scholar

  • Persis, D.C. and Isidori, A. (2001). A geometric approach to nonlinear fault detection and isolation, IEEE Transactions on Automatic Control AC-46(6): 853-865.CrossrefGoogle Scholar

  • Russell, E., Chiang, L., and Chiang, L. (2001). Fault Detection and Diagnosis in Industrial Systems, Springer, Berlin.Google Scholar

  • Samy, I., Postlethwaite, I. and Gu, D. (2011). Survey and application of sensor fault detection and isolation schemes, Control Engineering Practice 19(5): 658-674.CrossrefWeb of ScienceGoogle Scholar

  • Schreier, G., Ragot, J., Patton, R., and Frank, F. (1997). Observer design for a class of nonlinear systems, IFAC Symposium SAFEPROCESS’1997, Hull, UK, pp. 498-503.Google Scholar

  • Simani, S., Fantuzzi, C., and Patton, R. (2002). Model-Based Fault Diagnosis in Dynamic Systems Using Identification, Springer, Berlin.Google Scholar

  • Shumsky, A. and Zhirabok, A. (2006). Nonlinear diagnostic filter design: Algebraic and geometric points of view, International Journal of Applied Mathematics and Computer Science 16(1): 115-127.Google Scholar

  • Zhirabok, A. and Usoltsev, S. (2002). Fault diagnosis for nonlinear dynamic systems via linear methods, 15th World Congress IFAC, Barcelona, Spain, (on CD ROM).Google Scholar

  • Zhirabok, A., Kucher, D., and Filaretov, V. (2010). Achieving robustness at diagnosis of nonlinear systems, Automation and Remote Control 71(1): 142-155.Web of ScienceCrossrefGoogle Scholar

  • Zhirabok, A. and Shumsky, A. (2010). Linear methods in observability and controllability of nonlinear systems, 8th IFAC Symposium on Nonlinear Systems, Bologna, Italy, pp. 308-313.Google Scholar

  • Zhirabok, A. and Shumsky, A. (2013). Logic-dynamic approach to the robust fault diagnosis in nonlinear systems, 2013 Conference on Control and Fault Tolerant Systems, Nice, France, pp. 190-195.Google Scholar

About the article

Received: 2016-07-08

Revised: 2016-11-28

Accepted: 2017-03-10

Published Online: 2017-07-08

Published in Print: 2017-06-27


Citation Information: International Journal of Applied Mathematics and Computer Science, ISSN (Online) 2083-8492, DOI: https://doi.org/10.1515/amcs-2017-0019.

Export Citation

© by Alexey Zhirabok. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in