Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Animal Migration

Ed. by Davis, Andrew

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-8838
See all formats and pricing
In This Section

Non-volant modes of migration in terrestrial arthropods

Don R. Reynolds
  • Corresponding author
  • Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
  • Email:
/ Andrew M. Reynolds
  • Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
/ Jason W. Chapman
  • Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
Published Online: 2014-04-24 | DOI: https://doi.org/10.2478/ami-2014-0002

Abstract

Animal migration is often defined in terms appropriate only to the ‘to-and-fro’ movements of large, charismatic (and often vertebrate) species. However, like other important biological processes, the definition should apply over as broad a taxonomic range as possible in order to be intellectually satisfying. Here we illustrate the process of migration in insects and other terrestrial arthropods (e.g. arachnids, myriapods, and non-insect hexapods) but provide a different perspective by excluding the ‘typical’ mode of migration in insects, i.e. flapping flight. Instead, we review non-volant migratory movements, including: aerial migration by wingless species, pedestrian and waterborne migration, and phoresy. This reveals some fascinating and sometimes bizarre morphological and behavioural adaptations to facilitate movement. We also outline some innovative modelling approaches exploring the interactions between atmospheric transport processes and biological factors affecting the ‘dispersal kernels’ of wingless arthropods

Keywords: Migration syndrome; embarkation behaviours; anemohoria; anemohydrochoria; aquatic insects; surface skimming; pedestrian migration; phoresy; wingless arthropods

References

  • [1] Johnson C.G., Migration and dispersal of insects by flight, Methuen, London, 1969

  • [2] Dingle H., Migration: the biology of life on the move, Oxford University Press, Oxford, UK, 1996

  • [3] Anderson R.C., Do dragonflies migrate across the western Indian Ocean? J. Trop. Ecol., 2009, 25, 347-348 [Crossref]

  • [4] Stefanescu C., Páramo F., Akesson S., Alarcón M., Ávila A., Brereton T., et al., Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palaearctic, Ecography, 2013, 36, 474-486 [Crossref]

  • [5] Chapman J.W., Bell J.R., Burgin L.E., Reynolds D.R., Pettersson L.B., Hill J.K., et al., Seasonal migration to high latitudes results in major reproductive benefits in an insect, Proc. Natl Acad. Sci. USA, 2012, 109, 14924-14929 [Crossref]

  • [6] Kennedy, J.S., Migration, behavioural and ecological. Pages 5-26 in Rankin M.A. (Ed.), Migration: Mechanisms and Adaptive Significance, Contributions in Marine Science, 27 (Supplement),1985

  • [7] Yanoviak S.P., Kaspari M., Dudley R., Gliding hexapods and the origins of insect aerial behaviour, Biol. Lett., 2009, 5, 510-512 [Crossref]

  • [8] Yanoviak S.P., Munk Y., Kaspari M., Dudley, R., Aerial maneuverability in wingless gliding ants (Cephalotes atratus), Proc. R. Soc. Lond. B, 2010, 277, 2199-2204

  • [9] Chapman J.W., Drake V.A., Reynolds D.R., Recent insights from radar studies of insect flight, 2011, 56, 337-356

  • [10] Drake V.A., Reynolds D.R., Radar entomology: observing insect flight and migration, CABI, Wallingford, UK, 2012

  • [11] Chapman J.W., Klaassen R.H.G., Drake V.A., Fossette S., Hays G.C., Metcalfe J.D., et al., Animal orientation strategies for movement in flows, Curr. Biol., 2011, 21, R861-R870 [Crossref]

  • [12] Dingle H., Drake V.A., What is migration? BioScience, 2007, 57, 113-121 [Crossref]

  • [13] Chapman J.W., Drake V.A., Insect migration, Pages161-166 in Breed M.D., Moore J. (Eds), Encyclopedia of Animal Behavior, vol. 2, Academic Press, Oxford, UK, 2010

  • [14] Bell J.R., Bohan D.A., Shaw E.M., Weyman G.S., Ballooning dispersal using silk: world fauna, phylogenies, genetics and models, Bull. Entomol. Res., 2005, 95, 69-114

  • [15] Szymkowiak P., Górski G., Bajerlein D., Passive dispersal in arachnids, Biological Lett. (Poland), 2007, 44, 75-101

  • [16] Schneider, J.M., Roos, J., Lubin, Y., Henschel, J.R., Dispersal in Stegodyphus dumicola (Araneae, Eresidae): they do balloon after all! J. Arachnol. 29, 2001, 114-116 [Crossref]

  • [17] Coyle F.A., Aerial dispersal by mygalomorph spiderlings (Araneae, Mygalomorphae), J. Arachnol., 1983, 11, 283-286

  • [18] McManus M.L., Weather, behaviour and insect dispersal, Mem. Entomol. Soc. Can. 1988, 146, 71-94 [Crossref]

  • [19] Rhainds M., Davis D.R., Price P.W., Bionomics of bagworms (Lepidoptera: Psychidae), Annu. Rev. Entomol., 2009, 54, 209-226 [Crossref]

  • [20] Moore, R.G., Hanks, L.M., Aerial dispersal and host plant selection by neonate Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae), Ecol. Entomol., 2004, 29, 327-335 [Crossref]

  • [21] Fleschner C.A., Badgley M.E., Ricker D.W., Hall J.C., Air drift of spider mites, J. Econ. Entomol., 1956, 49, 624-627 [Crossref]

  • [22] Kennedy G.G., Smitley D.R., Dispersal. Pages 233-242 in Helle W., Sabelis M.W. (Eds), Spider mites: their biology, natural enemies and control, vol. 1A, Elsevier, Amsterdam, 1985

  • [23] Smitley D.R., Kennedy G.G., Photo-orientated aerial-dispersal behaviour of Tetranychus urticae (Acari: Tetranychidae) enhances escape from the leaf surface, Ann. Entomol. Soc. Am. 1985, 78, 609-614 [Crossref]

  • [24] Hussey N.W., Parr W.J., Dispersal of the glasshouse red spider mite Tetranychus urticae Koch (Acarina: Tetranychidae), Entomol. Exp. Appl. 1963, 6, 207-214 [Crossref]

  • [25] Liebhold A.M., Halverson J.A., Elmes G.A., Gypsy moth invasion in North America: a quantitative analysis, J. Biogeogr., 1992, 19, 513-520. [Crossref]

  • [26] Wainhouse D., Ecological methods in forest pest management, Oxford University Press, Oxford, UK, 2005

  • [27] Pugh P.J.A., Have mites (Acarina: Arachnida) colonised Antarctica and the islands of the Southern Ocean via air currents? Polar Rec., 2003, 39, 239-244

  • [28] Reynolds A.M., Bohan D., Bell J.R., Ballooning dispersal in arthropod taxa: conditions at take-off, Biol. Lett., 2007, 3, 237-240 [Crossref]

  • [29] Reynolds A.M., Bohan D.A., Bell J.R., Ballooning dispersal in arthropod taxa with convergent behaviours: dynamic properties of ballooning silk in turbulent flows, Biol. Lett. 2006, 2, 371-373 [Crossref]

  • [30] Barth F.G., Komarek S., Humphrey J.A.C., Treidler B., Drop and swing dispersal behavior of a tropical wandering spider: experiments and numerical model. J. Comp. Physiol. A, 1991, 169, 313-322

  • [31] Moran V.C., Gunn B.H., Walter G.H., Wind dispersal and settling of first crawlers of the cochineal insect Dactylopius austrinus (Homoptera: Coccoidea: Dactylopiidae), Ecol. Entomol., 1982, 7, 409-419

  • [32] Frost W.E., Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness, Physiol. Entomol., 1997, 22, 37-46 [Crossref]

  • [33] Hanks L.M., Denno R.F., Dispersal and adaptive deme formation in sedentary coccoid insects. Pages 239-262 in S. Mopper, S.Y. Strauss (Eds), Genetic structure and local adaptation in natural insect populations: effects of ecology, life history, and behaviour, Chapman & Hall, New York, 1998

  • [34] Lehmitz R., Russell D., Hohberg K., Christian A., Xylander W.E.R., Wind dispersal of oribatid mites as a mode of migration, Pedobiologia, 2011, 54, 201-207 [Crossref]

  • [35] Washburn J.O., Washburn L., Active aerial dispersal of minute wingless arthropods: exploitation of boundary-layer velocity gradients, Science, 1984, 223, 1088-1089

  • [36] Jung C., Croft, B.A., Aerial dispersal of phytoseiid mites (Acari: Phytoseiidae): estimating falling speed and dispersal distance of adult females, Oikos 2001, 94,182-190 [Crossref]

  • [37] Johnson D.T., Croft B.A., Laboratory study of the dispersal behaviour of Amblyseius fallacis (Acarina: Phytoseiidae), Ann. Entomol. Soc. Am., 1976, 69, 1019-1023 [Crossref]

  • [38] Sabelis, M.W., Afman B.P., Synomone-induced suppression of take-off in the phytoseiid mite, Phytoseiulus persimilis Athias- Henriot, Exp. Appl. Acarol., 1994, 18, 711-721

  • [39] Linquist E.E., Oldfield G.N., Evolution of eriophyoid mites in relation to their host plant. Pages 277-300 in Lindquist E.E., Sabelis, M.W., J. Bruin, J. (Eds), Eriophyoid mites: their biology, natural enemies and control, Elsevier, Amsterdam, 1996

  • [40] Sabelis M.W., Bruin J., Evolutionary ecology: life history patterns, food plant choice and dispersal. Pages 329-366 in Lindquist E.E., Sabelis M.W., Bruin J. (Eds), Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, 1996

  • [41] Bergh J.C., Ecology and aerobiology of dispersing citrus rust mites (Acari: Eriophyidae) in Central Florida, Environ. Entomol., 2001,30, 318-326 [Crossref]

  • [42] Nault L.R., Styer W.E., The dispersal of Aceria tulipae and three other grass-infesting eriophyid mites in Ohio, Ann. Entomol. Soc. Am., 1969, 62, 1446-1455 [Crossref]

  • [43] Evans G.O., Principles of acarology, CAB International, Wallingford, UK, 1992

  • [44] Greathead D.J., Crawler behaviour and dispersal. Pages 339-342 in Ben-Dov Y., Hodgson C.J. (Eds), Soft scale insects: their biology, natural enemies and control, Elsevier Science, Amsterdam, 1997

  • [45] Glick P.A., The distribution of insects, spiders and mites in the air, Technical Bulletin no. 673, United States Department of Agriculture, Washington D.C., 1939

  • [46] Freeman J.A., Occurrence of Collembola in the air, Proc. R. Entomol. Soc. Lond. A, 1952, 27, 28

  • [47] Farrow R.A., Greenslade P., A vertical migration of Collembola, Entomologist, 1992, 111, 38-45

  • [48] Blackith R.E., Disney R.H.L., Passive dispersal during moulting in tropical Collembola, Malayan Nat. J., 1988, 41, 529-531

  • [49] Van der Wurff A.W.G., Isaaks J.A., Ernsting G., Van Straalen N.M., Population substructures in the soil invertebrate Orchesella cincta, as revealed by microsatellite and TE-AFLP markers, Mol. Ecol., 2003,12, 1349-1359

  • [50] Timmermans M.J.T.N., Ellers J., Mariën J., Verhoef S.C., Ferwerda E.B., Van Straalen N.M., Genetic structure in Orchesella cincta (Collembola): strong subdivision of European populations inferred from mtDNA and AFLP markers, Mol. Ecol., 2005, 14, 2017-2024 [Crossref]

  • [51] Hawes T.C., Worland M.R., Convey P., Bale J.S., Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography, Antarct. Sci., 2007, 19, 3-10

  • [52] Reynolds A.M., Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed, Phytopathology, 2012, 102, 1026-1033 [Crossref]

  • [53] Stephens G.R., Aylor, D.E., Aerial dispersal of red pine scale, Matsucoccus resinosae (Homoptera: Margarodidae), Environ. Entomol., 1978, 7, 556-563 [Crossref]

  • [54] Reynolds A.M., Beating the odds in the aerial lottery: passive dispersers select conditions at take-off that maximise their expected fitness on landing, Amer. Nat. 2013, 181, 555-561 [Crossref]

  • [55] Reynolds A.M., Exponential and power-law contact distributions represent different atmospheric conditions, Phytopathology, 2011, 101, 1465-1470 [Crossref]

  • [56] Radicchi F., Baronchelli A., Amaral L.A.N., Rationality, irrationality and escalating behaviour in lowest unique bid auctions, PLoS One, 2012, 7, article e29910

  • [57] Viswanathan G.M., Luz, M.G.E., Raposo, E.P., Stanley, H.E., The physics of foraging: an introduction to random searches and biological encounters, Cambridge University Press, Cambridge, UK, 2011

  • [58] Wainhouse D., Dispersal of first instar larvae of the Felted Beech Scale, Cryptococcus fagisuga, J. Appl. Ecol., 1980, 17, 523-532 [Crossref]

  • [59] Uvarov B.P., Grasshoppers and locusts: a handbook of general acridology, vol. 2, Centre for Overseas Pest Research, London, 1977

  • [60] Lorch P.D., Sword G.A., Gwynne D.T., Anderson G.L., Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations, Ecol. Entomol., 2005, 30, 548-555 [Crossref]

  • [61] Kennedy, J.S., Phase transformation in locust biology, Biol. Rev., 1956, 31, 349-370 [Crossref]

  • [62] Kennedy J.S., Insect dispersal. Pages 103-119 in D. Pimental (Ed.) Insects, Science and Society. Academic Press, New York, 1975

  • [63] Simpson S.J., McCaffery A.R., Hägele, B.F., A behavioural analysis of phase change in the desert locust, Biol. Rev. 74, 1999, 461-480 [Crossref]

  • [64] Anstey M.L., Rogers S.M., Ott S.R., Burrows M., Simpson S.J., Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts, Science, 2009, 323, 627-630 [Crossref]

  • [65] Buhl J., Sumpter D.J.T., Couzin D., Hale J.J., Despland E., Miller E.R., et al., From disorder to order in marching locusts, Science, 2006, 312, 1402-1406 [Crossref]

  • [66] Buhl J., Sword G.A., Clissold F., Simpson S.J., Group structure in locust migratory bands, Behav. Ecol. Sociobiol., 2011, 65, 265-273 [Crossref]

  • [67] Schneirla T.C., The army-ant behavior pattern: nomad-statary relations in the swarmers and the problem of migration, Biol. Bull., 1945, 88, 1945, 166-193

  • [68] Franks N.R., Fletcher C.R., Spatial patterns in army ant foraging and migration: Eciton burchelli on Barro Colorado Island, Panama, Behav. Ecol. Sociobiol., 1983, 12, 261-270 [Crossref]

  • [69] Harrington R., Taylor L.R., Migration for survival: fine-scale population redistribution in an aphid, Myzus persicae, J. Anim. Ecol., 1990, 59, 1177-1193 [Crossref]

  • [70] Janowski-Bell M.E, Horner N.V., Movement of the male brown tarantula Aphonopelma hentzi (Araneae, Theraphosidae), using radio telemetry. J. Arachnol., 1999, 27, 503-512

  • [71] Hopkin S.P., Read H.J., The biology of millipedes, Oxford University Press Oxford, UK, 1992

  • [72] Hopkin S.P., Biology of the springtails (Insecta: Collembola), Oxford University Press, Oxford, UK, 1997

  • [73] Hagvar S., A review of Fennoscandian arthropods living on and in snow, Eur. J. Entomol., 2010, 107, 281-298 [Crossref]

  • [74] Hagvar S., Fjellberg A., Autumn migration of a colony of Hypogastrura socialis (Uzel) (Collembola, Hypogastruridae), Norw. J. Entomol., 2002, 49, 145-146

  • [75] Hagvar S., Long distance, directional migration on snow in a forest collembolan, Hypogastrura socialis (Uzel), Acta Zool. Fenn., 1995, 196, 200-205

  • [76] Hagvar S., Navigation and behaviour of four Collembola species migrating on the snow surface, Pedobiologia, 2000, 44, 221-233 [Crossref]

  • [77] Cloudsley-Thompson J.L., The significance of migration in Myriapods, Ann. Mag. Nat. Hist. Series 12, 1949, 2, 947-962

  • [78] Waters T.F., The drift of stream insects, Annu. Rev. Entomol., 1972, 17, 253-272. [Crossref]

  • [79] Brittain J.E., Biology of mayflies, Annu. Rev. Entomol., 1982, 27, 119-147. [Crossref]

  • [80] Speirs D.C., Gurney W.S.C., Population persistence in rivers and estuaries, Ecology, 2001, 82, 1219-1237 [Crossref]

  • [81] Olsson, T., Söderström O., Springtime migration and growth of Parameletus chelifer (Ephemeroptera) in a temporary stream in northern Sweden, Oikos 1978, 31, 284-289 [Crossref]

  • [82] Hughes J.M., Schmidt D.J., MacLean A., Wheatley A., Population genetic structure in stream insects: what have we learned? Pages 268-288 in Lancaster J., Briers R.A. (Eds), Aquatic insects: challenges to populations, CABI, Wallingford, UK, 2008

  • [83] Yasick A.L., Krebs R.A., Wolin J.A., The effect of dispersal ability in winter and summer stoneflies on their genetic differentiation, Ecol. Entomol., 2007, 32, 399-404. [Crossref]

  • [84] Davies B.R., The dispersal of Chironomidae larvae: a review, J. Entomol. Soc. S. Afr., 1976, 39, 39-62

  • [85] Franke C., Detection of transversal migration of larvae of Chaoborus flavicans (Diptera, Chaoboridae) by the use of a sonar system, Arch. Hydrobiol., 1987, 109, 355-366

  • [86] Palmén E., Die anemohydrochore Austbreitung der Insekten als zoogeographischer Faktor, Ann. Zool. Soc. Zool. Bot. Fenn. Vanamo, 1944, 10, 1-262

  • [87] Kennedy J.S., Fosbrooke I.H.M., The plant in the life of an aphid. Pages129-140 in van Emden, H.F. (Ed.), Insect/Plant Relationships (Symposia of the Royal Entomological Society of London, no. 6.) Blackwell Scientific Publications, Oxford, UK, 1973

  • [88] Shashar N., Sabbah S., Aharoni, N., Migrating locusts can detect polarized reflections to avoid flying over the sea, Biol. Lett., 2005, 1, 472-475 [Crossref]

  • [89] Hawes T.C., Worland M.R., Bale J.S., Convey P., Rafting in Antarctic Collembola, J. Zool., 2008, 274, 44-50

  • [90] Witteveen, J., Joosse E.N.G., The effects of inundation on marine littoral Collembola, Holarctic Ecol. 1988, 11, 1-7

  • [91] Peck S.B., Sea-surface (plueston) transport of insects between islands in the Galápagos Archipelago, Ecuador, Ann. Entomol. Soc. Am., 1994, 87, 576-582 [Crossref]

  • [92] Coulson S.J., Hodkinson I.D., Webb N.R., Harrison J.A., Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal, Funct. Ecol., 2002, 16, 353-356 [Crossref]

  • [93] Ólafsson E., The development of the land-arthropod fauna on Surtsey, Iceland, during 1971-1976, with notes on terrestrial Oligochaeta, Surtsey Research Progress Report 1978, 8, 41-46

  • [94] Foster W.A., Dispersal behaviour of an intertidal aphid, J. Anim. Ecol., 1978, 47, 653-659 [Crossref]

  • [95] Foster W.A., Treherne J.E., Dispersal mechanisms in an intertidal aphid, J. Anim. Ecol., 1978, 47, 205-217 [Crossref]

  • [96] Marden J.H., Kramer M.G., Locomotor performance of insects with rudimentary wings, Nature, 1995, 377, 332-334 [Crossref]

  • [97] Marden J.H., O’Donnell B.C., Thomas M.A., Bye J.Y., Surfaceskimming stoneflies and mayflies: the taxonomic and mechanical diversity of two-dimensional aerodynamic locomotion, Physiol. Biochem. Zool., 2000, 73, 751-764 [Crossref]

  • [98] Marden J.H., Evolution and physiology of flight in aquatic insects. Pages 230-249 in Lancaster J., Briers R.A. (Eds), Aquatic insects: challenges to populations, CABI, Wallingford, UK, 2008

  • [99] Dudley R., Byrnes G.,Yanoviak S.P., Borrell B., Brown R.M., McGuire J., Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu. Rev. Ecol. Evol. Syst., 2007, 38, 179-201 [Crossref]

  • [100] Farish D.J., Axtell R.C., Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae), Acarologia, 1971, 13, 16-25

  • [101] Athias-Binche F., Ecology and evolutionary ecology of phoresy in mites. Pages 27-41 in Dusbábek F., Bukva V. (Eds), Modern acarology, vol. 1, Academia, Prague, and SPB Academic Publishing, The Hague, 1991

  • [102] Walter D., Proctor H., Mites: ecology, evolution and behaviour, CABI Publishing, Wallingford, UK, 1999

  • [103] Krantz G.W., Habits and habitats. Pages 64-82 in Krantz G.W., Walter D.E. (Eds), A manual of acarology, 3rd edn, Texas Tech University Press, Lubbock, Texas, 2009

  • [104] Houck M.A., OConnor B.M., Ecological and evolutionary significance of phoresy in the Astigmata (Acari), Annu. Rev. Entomol., 1991, 36, 611-636 [Crossref]

  • [105] Binns E.S., Phoresy as migration - some functional aspects of phoresy in mites, Biol. Rev., 1982, 57, 571-620 [Crossref]

  • [106] Camerik A.M., Phoresy revisited. Pages 333-336 in Sabelis M.W., Bruin, J. (Eds), Trends in acarology - Proceedings of the 12th International Congress, Springer, Dordrecht, The Netherlands, 2009

  • [107] Gorb S.N., Attachment devices of insect cuticle, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001

  • [108] Southwood T.R.E., Migration of terrestrial arthropods in relation to habitat, Biol. Rev., 1962, 37, 171-214 [Crossref]

  • [109] Poinar G.O., Ćurčić B.P.M., Cokendolpher J.C., Arthropod phoresy involving pseudoscorpions in the past and present, Acta Arachnol., 1998, 47, 79-96

  • [110] Zeh D.W., Zeh J.A., Failed predation or transportation? Causes and consequences of phoretic behavior in the pseudoscorpion Dinocheirus arizonensis (Pseudoscorpionida: Chernetidae), J. Insect Behav. 1992, 5, 37-49 [Crossref]

  • [111] Weygoldt P., The biology of pseudoscorpions, Harvard University Press, Cambridge, Massachusetts, 1969

  • [112] Zeh D.W., Zeh J.A., Emergence of a giant fly triggers phoretic dispersal in the neotropical pseudoscorpion, Semeiochernes armiger (Balzan) (Pseudoscorpionida: Chernetidae), Bull. Brit. Arachnol. Soc., 1992, 9, 43-46

  • [113] Zeh D.W., Zeh J.A., On the function of harlequin beetle-riding in the pseudoscorpion, Cordylochernes scorpioides (Pseudoscorpionida: Chernetidae), J. Arachnol., 1992, 20, 47-51

  • [114] Hunter P.E., Rosario R.M.T., Associations of Mesostigmata with other arthropods, Annu. Rev. Entomol., 1988, 33, 393-417 [Crossref]

  • [115] Athias-Binche F., La phorésie chez les acariens: aspects adaptatifs et évolutifs. Editions du Castillet, Perpignan, France, 1994

  • [116] Perotti M.A., Braig H.R., Phoretic mites associated with animal and human decomposition, Exp. Appl. Acarol., 2009, 49, 85-124 [Crossref]

  • [117] Elzinga R.J., Broce A.B., Hypopi (Acari: Histiostomatidae) on house flies (Diptera: Muscidae): a case of detrimental phoresy, J. Kansas Entomol. Soc. 61, 1988, 208-213

  • [118] Houck M.A., Phoresy by Hemisarcoptes (Acari: Hemisarcoptidae) on Chilocorus (Coleoptera: Coccinellidae): influence of subelytral ultrastructure, Exp. Appl. Acarol., 1999, 23, 97-118 [Crossref]

  • [119] Elzinga R.J., Rettenmeyer C.W., Berghoff S.M., Army ant mites: the most specialized mites found on any social insect. Poster presented at Congress XV of the International Union for the Study of Social Insects, July 30 - August 5, 2006, Washington DC., http://www.armyantbiology.com/IUSSI_Mite_Poster.pdf

  • [120] OConnor B.M., Klompen, J.S.H., Phylogenetic perspectives on mite-insect associations: the evolution of acarinaria. Pages 63-71 in Needham G.R., Mitchell R., Horn D.J., Welbourn, W.C. (Eds), Acarology IX, vol. 2, Symposia. Ohio Biological Survey, Columbus, Ohio, 1999

  • [121] Okabe, K., Makino, S., Behavioural observations of the bodyguard mite Ensliniella parasitica. Pages 193-199 in Moraes G.J. de, Proctor H. (Eds), Acarology XIII: Proceedings of the International Congress, Zoosymposia 6, 2011

  • [122] Houck M.A., Cohen A.C., The potential role of phoresy in the evolution of parasitism: radiolabelling (tritium) evidence from an astigmatid mite, Exp. Appl. Acarol., 1995, 19, 677-694 [Crossref]

  • [123] Knülle W., Interaction between genetic and inductive factors controlling the expression of dispersal and dormancy morphs in dimorphic astigmatic mites, Evolution, 2003, 57, 828-838

  • [124] Hall C.C., A dispersal mechanism in mites (Acarina: Anoetidae), J. Kansas Entomol. Soc., 1959, 32, 45-46

  • [125] Krantz G.W., Dissemination of Kampimodromus aberrans by the filbert aphid, J. Econ. Entomol., 1973, 66, 575-576. [Crossref]

  • [126] Schwarz H.H., Koulianos S., When to leave the brood chamber? Routes of dispersal in mites associated with burying beetles, Exp. Appl. Acarol., 1998, 22, 621-631 [Crossref]

  • [127] Niogret J., Lumaret J.P., Bertrand M., Semiochemicals mediating host-finding behaviour in the phoretic association between Macrocheles saceri (Acari: Mesostigmata) and Scarabaeus species (Coleoptera: Scarabaeidae), Chemoecology, 2006, 16, 129-134 [Crossref]

  • [128] Soroker V., Nelson D.R., Bahar O., Reneh S., Yablonski S., Palevsky E ., Whitefly wax as a cue for phoresy in the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae), Chemoecology, 2003, 13, 163-168 [Crossref]

  • [129] Colwell R.K., Stowaways on the hummingbird express, Nat. Hist. 1985, 94(7), 56-63

  • [130] Boggs C.L., Gilbert L.E., Spatial and temporal distribution of Lantana mites phoretic on Lepidoptera, Biotropica, 1987,19, 301-305 [Crossref]

  • [131] Tschapka M., Cunningham S.A., Flower mites of Calyptrogyne ghiesbreghtiana (Araceae): evidence for dispersal using pollinating bats. Biotropica 2004, 36, 377-381 [Crossref]

  • [132] Heyneman A.J., Colwell R.K., Naeem S., Dobkin D.S., Hallet B., Host plant discrimination: experiments with hummingbird flower mites. Pages 455-485 in Price P.W., Lewinsohn T.M., Fernandes G.W., Benson W.W (Eds), Plant-animal interactions: Evolutionary ecology in tropical and temperate regions, John Wiley and Sons, New York, 1991

  • [133] Clausen, C.P., Phoresy among entomophagous insects, Annu. Rev. Entomol., 1976, 21, 343-368 [Crossref]

  • [134] Farrow R.A., Aerial dispersal of Scelio fulgidus [Hym.: Scelionidae], parasite of eggs of locusts and grasshoppers [Ort.: Acrididae], Entomophaga, 1981, 26, 349-355

  • [135] Green A.J., Sánchez M.I., Passive internal dispersal of insect larvae by migratory birds, Biol. Lett. 2006, 2, 55-57 [Crossref]

  • [136] Guix J.C., Ruiz X., Weevil larvae dispersal by guans in southeastern Brazil, Biotropica, 1997, 29, 522-525 [Crossref]

  • [137] Magsig-Castillo J., Morse J.G., Walker G.P., Bi J.L, Rugman-Jones P.F., Stouthamer, R., Phoretic dispersal of armored scale crawlers (Hemiptera: Diaspididae), J. Econ. Entomol., 2010, 103, 1172-1179 [Crossref]

  • [138] Gullan, P.J., Cockburn A., Sexual dichronism and intersexual phoresy in gall-forming coccoids, Oecologia, 1986, 68, 632-634 [Crossref]

  • [139] Dingle H., Animal migration: Is there a common migratory syndrome? J. Ornith., 2006,147, 212-220

  • [140] Drake V.A., Gatehouse A.G., Farrow, R.A., Insect migration: a holistic conceptual model. Pages 427-457 in Drake V.A., Gatehouse A.G. (Eds), Insect migration: tracking resources through space and time, Cambridge University Press, Cambridge, UK, 1995

About the article

Received: 2013-11-18

Accepted: 2013-12-16

Published Online: 2014-04-24

Published in Print: 2014-01-01



Citation Information: Animal Migration, ISSN (Online) 2084-8838, DOI: https://doi.org/10.2478/ami-2014-0002. Export Citation

© 2014 Don R. Reynolds et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in