Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

Open Access
See all formats and pricing
More options …

Non-volant modes of migration in terrestrial arthropods

Don R. Reynolds
  • Corresponding author
  • Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew M. Reynolds / Jason W. Chapman
  • Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-24 | DOI: https://doi.org/10.2478/ami-2014-0002


Animal migration is often defined in terms appropriate only to the ‘to-and-fro’ movements of large, charismatic (and often vertebrate) species. However, like other important biological processes, the definition should apply over as broad a taxonomic range as possible in order to be intellectually satisfying. Here we illustrate the process of migration in insects and other terrestrial arthropods (e.g. arachnids, myriapods, and non-insect hexapods) but provide a different perspective by excluding the ‘typical’ mode of migration in insects, i.e. flapping flight. Instead, we review non-volant migratory movements, including: aerial migration by wingless species, pedestrian and waterborne migration, and phoresy. This reveals some fascinating and sometimes bizarre morphological and behavioural adaptations to facilitate movement. We also outline some innovative modelling approaches exploring the interactions between atmospheric transport processes and biological factors affecting the ‘dispersal kernels’ of wingless arthropods

Keywords: Migration syndrome; embarkation behaviours; anemohoria; anemohydrochoria; aquatic insects; surface skimming; pedestrian migration; phoresy; wingless arthropods


  • [1] Johnson C.G., Migration and dispersal of insects by flight, Methuen, London, 1969Google Scholar

  • [2] Dingle H., Migration: the biology of life on the move, Oxford University Press, Oxford, UK, 1996Google Scholar

  • [3] Anderson R.C., Do dragonflies migrate across the western Indian Ocean? J. Trop. Ecol., 2009, 25, 347-348CrossrefGoogle Scholar

  • [4] Stefanescu C., Páramo F., Akesson S., Alarcón M., Ávila A., Brereton T., et al., Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palaearctic, Ecography, 2013, 36, 474-486CrossrefGoogle Scholar

  • [5] Chapman J.W., Bell J.R., Burgin L.E., Reynolds D.R., Pettersson L.B., Hill J.K., et al., Seasonal migration to high latitudes results in major reproductive benefits in an insect, Proc. Natl Acad. Sci. USA, 2012, 109, 14924-14929CrossrefGoogle Scholar

  • [6] Kennedy, J.S., Migration, behavioural and ecological. Pages 5-26 in Rankin M.A. (Ed.), Migration: Mechanisms and Adaptive Significance, Contributions in Marine Science, 27 (Supplement),1985Google Scholar

  • [7] Yanoviak S.P., Kaspari M., Dudley R., Gliding hexapods and the origins of insect aerial behaviour, Biol. Lett., 2009, 5, 510-512CrossrefGoogle Scholar

  • [8] Yanoviak S.P., Munk Y., Kaspari M., Dudley, R., Aerial maneuverability in wingless gliding ants (Cephalotes atratus), Proc. R. Soc. Lond. B, 2010, 277, 2199-2204Google Scholar

  • [9] Chapman J.W., Drake V.A., Reynolds D.R., Recent insights from radar studies of insect flight, 2011, 56, 337-356Google Scholar

  • [10] Drake V.A., Reynolds D.R., Radar entomology: observing insect flight and migration, CABI, Wallingford, UK, 2012Google Scholar

  • [11] Chapman J.W., Klaassen R.H.G., Drake V.A., Fossette S., Hays G.C., Metcalfe J.D., et al., Animal orientation strategies for movement in flows, Curr. Biol., 2011, 21, R861-R870CrossrefGoogle Scholar

  • [12] Dingle H., Drake V.A., What is migration? BioScience, 2007, 57, 113-121CrossrefGoogle Scholar

  • [13] Chapman J.W., Drake V.A., Insect migration, Pages161-166 in Breed M.D., Moore J. (Eds), Encyclopedia of Animal Behavior, vol. 2, Academic Press, Oxford, UK, 2010Google Scholar

  • [14] Bell J.R., Bohan D.A., Shaw E.M., Weyman G.S., Ballooning dispersal using silk: world fauna, phylogenies, genetics and models, Bull. Entomol. Res., 2005, 95, 69-114Google Scholar

  • [15] Szymkowiak P., Górski G., Bajerlein D., Passive dispersal in arachnids, Biological Lett. (Poland), 2007, 44, 75-101Google Scholar

  • [16] Schneider, J.M., Roos, J., Lubin, Y., Henschel, J.R., Dispersal in Stegodyphus dumicola (Araneae, Eresidae): they do balloon after all! J. Arachnol. 29, 2001, 114-116CrossrefGoogle Scholar

  • [17] Coyle F.A., Aerial dispersal by mygalomorph spiderlings (Araneae, Mygalomorphae), J. Arachnol., 1983, 11, 283-286Google Scholar

  • [18] McManus M.L., Weather, behaviour and insect dispersal, Mem. Entomol. Soc. Can. 1988, 146, 71-94CrossrefGoogle Scholar

  • [19] Rhainds M., Davis D.R., Price P.W., Bionomics of bagworms (Lepidoptera: Psychidae), Annu. Rev. Entomol., 2009, 54, 209-226CrossrefGoogle Scholar

  • [20] Moore, R.G., Hanks, L.M., Aerial dispersal and host plant selection by neonate Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae), Ecol. Entomol., 2004, 29, 327-335CrossrefGoogle Scholar

  • [21] Fleschner C.A., Badgley M.E., Ricker D.W., Hall J.C., Air drift of spider mites, J. Econ. Entomol., 1956, 49, 624-627CrossrefGoogle Scholar

  • [22] Kennedy G.G., Smitley D.R., Dispersal. Pages 233-242 in Helle W., Sabelis M.W. (Eds), Spider mites: their biology, natural enemies and control, vol. 1A, Elsevier, Amsterdam, 1985Google Scholar

  • [23] Smitley D.R., Kennedy G.G., Photo-orientated aerial-dispersal behaviour of Tetranychus urticae (Acari: Tetranychidae) enhances escape from the leaf surface, Ann. Entomol. Soc. Am. 1985, 78, 609-614CrossrefGoogle Scholar

  • [24] Hussey N.W., Parr W.J., Dispersal of the glasshouse red spider mite Tetranychus urticae Koch (Acarina: Tetranychidae), Entomol. Exp. Appl. 1963, 6, 207-214CrossrefGoogle Scholar

  • [25] Liebhold A.M., Halverson J.A., Elmes G.A., Gypsy moth invasion in North America: a quantitative analysis, J. Biogeogr., 1992, 19, 513-520.CrossrefGoogle Scholar

  • [26] Wainhouse D., Ecological methods in forest pest management, Oxford University Press, Oxford, UK, 2005Google Scholar

  • [27] Pugh P.J.A., Have mites (Acarina: Arachnida) colonised Antarctica and the islands of the Southern Ocean via air currents? Polar Rec., 2003, 39, 239-244Google Scholar

  • [28] Reynolds A.M., Bohan D., Bell J.R., Ballooning dispersal in arthropod taxa: conditions at take-off, Biol. Lett., 2007, 3, 237-240CrossrefGoogle Scholar

  • [29] Reynolds A.M., Bohan D.A., Bell J.R., Ballooning dispersal in arthropod taxa with convergent behaviours: dynamic properties of ballooning silk in turbulent flows, Biol. Lett. 2006, 2, 371-373CrossrefGoogle Scholar

  • [30] Barth F.G., Komarek S., Humphrey J.A.C., Treidler B., Drop and swing dispersal behavior of a tropical wandering spider: experiments and numerical model. J. Comp. Physiol. A, 1991, 169, 313-322Google Scholar

  • [31] Moran V.C., Gunn B.H., Walter G.H., Wind dispersal and settling of first crawlers of the cochineal insect Dactylopius austrinus (Homoptera: Coccoidea: Dactylopiidae), Ecol. Entomol., 1982, 7, 409-419Google Scholar

  • [32] Frost W.E., Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness, Physiol. Entomol., 1997, 22, 37-46CrossrefGoogle Scholar

  • [33] Hanks L.M., Denno R.F., Dispersal and adaptive deme formation in sedentary coccoid insects. Pages 239-262 in S. Mopper, S.Y. Strauss (Eds), Genetic structure and local adaptation in natural insect populations: effects of ecology, life history, and behaviour, Chapman & Hall, New York, 1998Google Scholar

  • [34] Lehmitz R., Russell D., Hohberg K., Christian A., Xylander W.E.R., Wind dispersal of oribatid mites as a mode of migration, Pedobiologia, 2011, 54, 201-207CrossrefGoogle Scholar

  • [35] Washburn J.O., Washburn L., Active aerial dispersal of minute wingless arthropods: exploitation of boundary-layer velocity gradients, Science, 1984, 223, 1088-1089Google Scholar

  • [36] Jung C., Croft, B.A., Aerial dispersal of phytoseiid mites (Acari: Phytoseiidae): estimating falling speed and dispersal distance of adult females, Oikos 2001, 94,182-190CrossrefGoogle Scholar

  • [37] Johnson D.T., Croft B.A., Laboratory study of the dispersal behaviour of Amblyseius fallacis (Acarina: Phytoseiidae), Ann. Entomol. Soc. Am., 1976, 69, 1019-1023CrossrefGoogle Scholar

  • [38] Sabelis, M.W., Afman B.P., Synomone-induced suppression of take-off in the phytoseiid mite, Phytoseiulus persimilis Athias- Henriot, Exp. Appl. Acarol., 1994, 18, 711-721Google Scholar

  • [39] Linquist E.E., Oldfield G.N., Evolution of eriophyoid mites in relation to their host plant. Pages 277-300 in Lindquist E.E., Sabelis, M.W., J. Bruin, J. (Eds), Eriophyoid mites: their biology, natural enemies and control, Elsevier, Amsterdam, 1996Google Scholar

  • [40] Sabelis M.W., Bruin J., Evolutionary ecology: life history patterns, food plant choice and dispersal. Pages 329-366 in Lindquist E.E., Sabelis M.W., Bruin J. (Eds), Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, 1996Google Scholar

  • [41] Bergh J.C., Ecology and aerobiology of dispersing citrus rust mites (Acari: Eriophyidae) in Central Florida, Environ. Entomol., 2001,30, 318-326CrossrefGoogle Scholar

  • [42] Nault L.R., Styer W.E., The dispersal of Aceria tulipae and three other grass-infesting eriophyid mites in Ohio, Ann. Entomol. Soc. Am., 1969, 62, 1446-1455CrossrefGoogle Scholar

  • [43] Evans G.O., Principles of acarology, CAB International, Wallingford, UK, 1992Google Scholar

  • [44] Greathead D.J., Crawler behaviour and dispersal. Pages 339-342 in Ben-Dov Y., Hodgson C.J. (Eds), Soft scale insects: their biology, natural enemies and control, Elsevier Science, Amsterdam, 1997Google Scholar

  • [45] Glick P.A., The distribution of insects, spiders and mites in the air, Technical Bulletin no. 673, United States Department of Agriculture, Washington D.C., 1939Google Scholar

  • [46] Freeman J.A., Occurrence of Collembola in the air, Proc. R. Entomol. Soc. Lond. A, 1952, 27, 28Google Scholar

  • [47] Farrow R.A., Greenslade P., A vertical migration of Collembola, Entomologist, 1992, 111, 38-45Google Scholar

  • [48] Blackith R.E., Disney R.H.L., Passive dispersal during moulting in tropical Collembola, Malayan Nat. J., 1988, 41, 529-531Google Scholar

  • [49] Van der Wurff A.W.G., Isaaks J.A., Ernsting G., Van Straalen N.M., Population substructures in the soil invertebrate Orchesella cincta, as revealed by microsatellite and TE-AFLP markers, Mol. Ecol., 2003,12, 1349-1359Google Scholar

  • [50] Timmermans M.J.T.N., Ellers J., Mariën J., Verhoef S.C., Ferwerda E.B., Van Straalen N.M., Genetic structure in Orchesella cincta (Collembola): strong subdivision of European populations inferred from mtDNA and AFLP markers, Mol. Ecol., 2005, 14, 2017-2024CrossrefGoogle Scholar

  • [51] Hawes T.C., Worland M.R., Convey P., Bale J.S., Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography, Antarct. Sci., 2007, 19, 3-10Google Scholar

  • [52] Reynolds A.M., Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed, Phytopathology, 2012, 102, 1026-1033CrossrefGoogle Scholar

  • [53] Stephens G.R., Aylor, D.E., Aerial dispersal of red pine scale, Matsucoccus resinosae (Homoptera: Margarodidae), Environ. Entomol., 1978, 7, 556-563CrossrefGoogle Scholar

  • [54] Reynolds A.M., Beating the odds in the aerial lottery: passive dispersers select conditions at take-off that maximise their expected fitness on landing, Amer. Nat. 2013, 181, 555-561CrossrefGoogle Scholar

  • [55] Reynolds A.M., Exponential and power-law contact distributions represent different atmospheric conditions, Phytopathology, 2011, 101, 1465-1470CrossrefGoogle Scholar

  • [56] Radicchi F., Baronchelli A., Amaral L.A.N., Rationality, irrationality and escalating behaviour in lowest unique bid auctions, PLoS One, 2012, 7, article e29910Google Scholar

  • [57] Viswanathan G.M., Luz, M.G.E., Raposo, E.P., Stanley, H.E., The physics of foraging: an introduction to random searches and biological encounters, Cambridge University Press, Cambridge, UK, 2011Google Scholar

  • [58] Wainhouse D., Dispersal of first instar larvae of the Felted Beech Scale, Cryptococcus fagisuga, J. Appl. Ecol., 1980, 17, 523-532CrossrefGoogle Scholar

  • [59] Uvarov B.P., Grasshoppers and locusts: a handbook of general acridology, vol. 2, Centre for Overseas Pest Research, London, 1977Google Scholar

  • [60] Lorch P.D., Sword G.A., Gwynne D.T., Anderson G.L., Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations, Ecol. Entomol., 2005, 30, 548-555CrossrefGoogle Scholar

  • [61] Kennedy, J.S., Phase transformation in locust biology, Biol. Rev., 1956, 31, 349-370CrossrefGoogle Scholar

  • [62] Kennedy J.S., Insect dispersal. Pages 103-119 in D. Pimental (Ed.) Insects, Science and Society. Academic Press, New York, 1975Google Scholar

  • [63] Simpson S.J., McCaffery A.R., Hägele, B.F., A behavioural analysis of phase change in the desert locust, Biol. Rev. 74, 1999, 461-480 CrossrefGoogle Scholar

  • [64] Anstey M.L., Rogers S.M., Ott S.R., Burrows M., Simpson S.J., Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts, Science, 2009, 323, 627-630CrossrefGoogle Scholar

  • [65] Buhl J., Sumpter D.J.T., Couzin D., Hale J.J., Despland E., Miller E.R., et al., From disorder to order in marching locusts, Science, 2006, 312, 1402-1406CrossrefGoogle Scholar

  • [66] Buhl J., Sword G.A., Clissold F., Simpson S.J., Group structure in locust migratory bands, Behav. Ecol. Sociobiol., 2011, 65, 265-273CrossrefGoogle Scholar

  • [67] Schneirla T.C., The army-ant behavior pattern: nomad-statary relations in the swarmers and the problem of migration, Biol. Bull., 1945, 88, 1945, 166-193Google Scholar

  • [68] Franks N.R., Fletcher C.R., Spatial patterns in army ant foraging and migration: Eciton burchelli on Barro Colorado Island, Panama, Behav. Ecol. Sociobiol., 1983, 12, 261-270CrossrefGoogle Scholar

  • [69] Harrington R., Taylor L.R., Migration for survival: fine-scale population redistribution in an aphid, Myzus persicae, J. Anim. Ecol., 1990, 59, 1177-1193CrossrefGoogle Scholar

  • [70] Janowski-Bell M.E, Horner N.V., Movement of the male brown tarantula Aphonopelma hentzi (Araneae, Theraphosidae), using radio telemetry. J. Arachnol., 1999, 27, 503-512Google Scholar

  • [71] Hopkin S.P., Read H.J., The biology of millipedes, Oxford University Press Oxford, UK, 1992Google Scholar

  • [72] Hopkin S.P., Biology of the springtails (Insecta: Collembola), Oxford University Press, Oxford, UK, 1997Google Scholar

  • [73] Hagvar S., A review of Fennoscandian arthropods living on and in snow, Eur. J. Entomol., 2010, 107, 281-298CrossrefGoogle Scholar

  • [74] Hagvar S., Fjellberg A., Autumn migration of a colony of Hypogastrura socialis (Uzel) (Collembola, Hypogastruridae), Norw. J. Entomol., 2002, 49, 145-146Google Scholar

  • [75] Hagvar S., Long distance, directional migration on snow in a forest collembolan, Hypogastrura socialis (Uzel), Acta Zool. Fenn., 1995, 196, 200-205Google Scholar

  • [76] Hagvar S., Navigation and behaviour of four Collembola species migrating on the snow surface, Pedobiologia, 2000, 44, 221-233CrossrefGoogle Scholar

  • [77] Cloudsley-Thompson J.L., The significance of migration in Myriapods, Ann. Mag. Nat. Hist. Series 12, 1949, 2, 947-962Google Scholar

  • [78] Waters T.F., The drift of stream insects, Annu. Rev. Entomol., 1972, 17, 253-272.CrossrefGoogle Scholar

  • [79] Brittain J.E., Biology of mayflies, Annu. Rev. Entomol., 1982, 27, 119-147.CrossrefGoogle Scholar

  • [80] Speirs D.C., Gurney W.S.C., Population persistence in rivers and estuaries, Ecology, 2001, 82, 1219-1237CrossrefGoogle Scholar

  • [81] Olsson, T., Söderström O., Springtime migration and growth of Parameletus chelifer (Ephemeroptera) in a temporary stream in northern Sweden, Oikos 1978, 31, 284-289CrossrefGoogle Scholar

  • [82] Hughes J.M., Schmidt D.J., MacLean A., Wheatley A., Population genetic structure in stream insects: what have we learned? Pages 268-288 in Lancaster J., Briers R.A. (Eds), Aquatic insects: challenges to populations, CABI, Wallingford, UK, 2008Google Scholar

  • [83] Yasick A.L., Krebs R.A., Wolin J.A., The effect of dispersal ability in winter and summer stoneflies on their genetic differentiation, Ecol. Entomol., 2007, 32, 399-404.CrossrefGoogle Scholar

  • [84] Davies B.R., The dispersal of Chironomidae larvae: a review, J. Entomol. Soc. S. Afr., 1976, 39, 39-62Google Scholar

  • [85] Franke C., Detection of transversal migration of larvae of Chaoborus flavicans (Diptera, Chaoboridae) by the use of a sonar system, Arch. Hydrobiol., 1987, 109, 355-366 Google Scholar

  • [86] Palmén E., Die anemohydrochore Austbreitung der Insekten als zoogeographischer Faktor, Ann. Zool. Soc. Zool. Bot. Fenn. Vanamo, 1944, 10, 1-262Google Scholar

  • [87] Kennedy J.S., Fosbrooke I.H.M., The plant in the life of an aphid. Pages129-140 in van Emden, H.F. (Ed.), Insect/Plant Relationships (Symposia of the Royal Entomological Society of London, no. 6.) Blackwell Scientific Publications, Oxford, UK, 1973Google Scholar

  • [88] Shashar N., Sabbah S., Aharoni, N., Migrating locusts can detect polarized reflections to avoid flying over the sea, Biol. Lett., 2005, 1, 472-475CrossrefGoogle Scholar

  • [89] Hawes T.C., Worland M.R., Bale J.S., Convey P., Rafting in Antarctic Collembola, J. Zool., 2008, 274, 44-50Google Scholar

  • [90] Witteveen, J., Joosse E.N.G., The effects of inundation on marine littoral Collembola, Holarctic Ecol. 1988, 11, 1-7Google Scholar

  • [91] Peck S.B., Sea-surface (plueston) transport of insects between islands in the Galápagos Archipelago, Ecuador, Ann. Entomol. Soc. Am., 1994, 87, 576-582CrossrefGoogle Scholar

  • [92] Coulson S.J., Hodkinson I.D., Webb N.R., Harrison J.A., Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal, Funct. Ecol., 2002, 16, 353-356CrossrefGoogle Scholar

  • [93] Ólafsson E., The development of the land-arthropod fauna on Surtsey, Iceland, during 1971-1976, with notes on terrestrial Oligochaeta, Surtsey Research Progress Report 1978, 8, 41-46Google Scholar

  • [94] Foster W.A., Dispersal behaviour of an intertidal aphid, J. Anim. Ecol., 1978, 47, 653-659CrossrefGoogle Scholar

  • [95] Foster W.A., Treherne J.E., Dispersal mechanisms in an intertidal aphid, J. Anim. Ecol., 1978, 47, 205-217CrossrefGoogle Scholar

  • [96] Marden J.H., Kramer M.G., Locomotor performance of insects with rudimentary wings, Nature, 1995, 377, 332-334CrossrefGoogle Scholar

  • [97] Marden J.H., O’Donnell B.C., Thomas M.A., Bye J.Y., Surfaceskimming stoneflies and mayflies: the taxonomic and mechanical diversity of two-dimensional aerodynamic locomotion, Physiol. Biochem. Zool., 2000, 73, 751-764CrossrefGoogle Scholar

  • [98] Marden J.H., Evolution and physiology of flight in aquatic insects. Pages 230-249 in Lancaster J., Briers R.A. (Eds), Aquatic insects: challenges to populations, CABI, Wallingford, UK, 2008Google Scholar

  • [99] Dudley R., Byrnes G.,Yanoviak S.P., Borrell B., Brown R.M., McGuire J., Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu. Rev. Ecol. Evol. Syst., 2007, 38, 179-201CrossrefGoogle Scholar

  • [100] Farish D.J., Axtell R.C., Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae), Acarologia, 1971, 13, 16-25Google Scholar

  • [101] Athias-Binche F., Ecology and evolutionary ecology of phoresy in mites. Pages 27-41 in Dusbábek F., Bukva V. (Eds), Modern acarology, vol. 1, Academia, Prague, and SPB Academic Publishing, The Hague, 1991Google Scholar

  • [102] Walter D., Proctor H., Mites: ecology, evolution and behaviour, CABI Publishing, Wallingford, UK, 1999Google Scholar

  • [103] Krantz G.W., Habits and habitats. Pages 64-82 in Krantz G.W., Walter D.E. (Eds), A manual of acarology, 3rd edn, Texas Tech University Press, Lubbock, Texas, 2009Google Scholar

  • [104] Houck M.A., OConnor B.M., Ecological and evolutionary significance of phoresy in the Astigmata (Acari), Annu. Rev. Entomol., 1991, 36, 611-636CrossrefGoogle Scholar

  • [105] Binns E.S., Phoresy as migration - some functional aspects of phoresy in mites, Biol. Rev., 1982, 57, 571-620 CrossrefGoogle Scholar

  • [106] Camerik A.M., Phoresy revisited. Pages 333-336 in Sabelis M.W., Bruin, J. (Eds), Trends in acarology - Proceedings of the 12th International Congress, Springer, Dordrecht, The Netherlands, 2009Google Scholar

  • [107] Gorb S.N., Attachment devices of insect cuticle, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001Google Scholar

  • [108] Southwood T.R.E., Migration of terrestrial arthropods in relation to habitat, Biol. Rev., 1962, 37, 171-214CrossrefGoogle Scholar

  • [109] Poinar G.O., Ćurčić B.P.M., Cokendolpher J.C., Arthropod phoresy involving pseudoscorpions in the past and present, Acta Arachnol., 1998, 47, 79-96Google Scholar

  • [110] Zeh D.W., Zeh J.A., Failed predation or transportation? Causes and consequences of phoretic behavior in the pseudoscorpion Dinocheirus arizonensis (Pseudoscorpionida: Chernetidae), J. Insect Behav. 1992, 5, 37-49CrossrefGoogle Scholar

  • [111] Weygoldt P., The biology of pseudoscorpions, Harvard University Press, Cambridge, Massachusetts, 1969Google Scholar

  • [112] Zeh D.W., Zeh J.A., Emergence of a giant fly triggers phoretic dispersal in the neotropical pseudoscorpion, Semeiochernes armiger (Balzan) (Pseudoscorpionida: Chernetidae), Bull. Brit. Arachnol. Soc., 1992, 9, 43-46Google Scholar

  • [113] Zeh D.W., Zeh J.A., On the function of harlequin beetle-riding in the pseudoscorpion, Cordylochernes scorpioides (Pseudoscorpionida: Chernetidae), J. Arachnol., 1992, 20, 47-51Google Scholar

  • [114] Hunter P.E., Rosario R.M.T., Associations of Mesostigmata with other arthropods, Annu. Rev. Entomol., 1988, 33, 393-417CrossrefGoogle Scholar

  • [115] Athias-Binche F., La phorésie chez les acariens: aspects adaptatifs et évolutifs. Editions du Castillet, Perpignan, France, 1994Google Scholar

  • [116] Perotti M.A., Braig H.R., Phoretic mites associated with animal and human decomposition, Exp. Appl. Acarol., 2009, 49, 85-124CrossrefGoogle Scholar

  • [117] Elzinga R.J., Broce A.B., Hypopi (Acari: Histiostomatidae) on house flies (Diptera: Muscidae): a case of detrimental phoresy, J. Kansas Entomol. Soc. 61, 1988, 208-213Google Scholar

  • [118] Houck M.A., Phoresy by Hemisarcoptes (Acari: Hemisarcoptidae) on Chilocorus (Coleoptera: Coccinellidae): influence of subelytral ultrastructure, Exp. Appl. Acarol., 1999, 23, 97-118CrossrefGoogle Scholar

  • [119] Elzinga R.J., Rettenmeyer C.W., Berghoff S.M., Army ant mites: the most specialized mites found on any social insect. Poster presented at Congress XV of the International Union for the Study of Social Insects, July 30 - August 5, 2006, Washington DC., http://www.armyantbiology.com/IUSSI_Mite_Poster.pdfGoogle Scholar

  • [120] OConnor B.M., Klompen, J.S.H., Phylogenetic perspectives on mite-insect associations: the evolution of acarinaria. Pages 63-71 in Needham G.R., Mitchell R., Horn D.J., Welbourn, W.C. (Eds), Acarology IX, vol. 2, Symposia. Ohio Biological Survey, Columbus, Ohio, 1999Google Scholar

  • [121] Okabe, K., Makino, S., Behavioural observations of the bodyguard mite Ensliniella parasitica. Pages 193-199 in Moraes G.J. de, Proctor H. (Eds), Acarology XIII: Proceedings of the International Congress, Zoosymposia 6, 2011Google Scholar

  • [122] Houck M.A., Cohen A.C., The potential role of phoresy in the evolution of parasitism: radiolabelling (tritium) evidence from an astigmatid mite, Exp. Appl. Acarol., 1995, 19, 677-694CrossrefGoogle Scholar

  • [123] Knülle W., Interaction between genetic and inductive factors controlling the expression of dispersal and dormancy morphs in dimorphic astigmatic mites, Evolution, 2003, 57, 828-838Google Scholar

  • [124] Hall C.C., A dispersal mechanism in mites (Acarina: Anoetidae), J. Kansas Entomol. Soc., 1959, 32, 45-46Google Scholar

  • [125] Krantz G.W., Dissemination of Kampimodromus aberrans by the filbert aphid, J. Econ. Entomol., 1973, 66, 575-576.CrossrefGoogle Scholar

  • [126] Schwarz H.H., Koulianos S., When to leave the brood chamber? Routes of dispersal in mites associated with burying beetles, Exp. Appl. Acarol., 1998, 22, 621-631CrossrefGoogle Scholar

  • [127] Niogret J., Lumaret J.P., Bertrand M., Semiochemicals mediating host-finding behaviour in the phoretic association between Macrocheles saceri (Acari: Mesostigmata) and Scarabaeus species (Coleoptera: Scarabaeidae), Chemoecology, 2006, 16, 129-134CrossrefGoogle Scholar

  • [128] Soroker V., Nelson D.R., Bahar O., Reneh S., Yablonski S., Palevsky E ., Whitefly wax as a cue for phoresy in the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae), Chemoecology, 2003, 13, 163-168CrossrefGoogle Scholar

  • [129] Colwell R.K., Stowaways on the hummingbird express, Nat. Hist. 1985, 94(7), 56-63Google Scholar

  • [130] Boggs C.L., Gilbert L.E., Spatial and temporal distribution of Lantana mites phoretic on Lepidoptera, Biotropica, 1987,19, 301-305CrossrefGoogle Scholar

  • [131] Tschapka M., Cunningham S.A., Flower mites of Calyptrogyne ghiesbreghtiana (Araceae): evidence for dispersal using pollinating bats. Biotropica 2004, 36, 377-381CrossrefGoogle Scholar

  • [132] Heyneman A.J., Colwell R.K., Naeem S., Dobkin D.S., Hallet B., Host plant discrimination: experiments with hummingbird flower mites. Pages 455-485 in Price P.W., Lewinsohn T.M., Fernandes G.W., Benson W.W (Eds), Plant-animal interactions: Evolutionary ecology in tropical and temperate regions, John Wiley and Sons, New York, 1991Google Scholar

  • [133] Clausen, C.P., Phoresy among entomophagous insects, Annu. Rev. Entomol., 1976, 21, 343-368CrossrefGoogle Scholar

  • [134] Farrow R.A., Aerial dispersal of Scelio fulgidus [Hym.: Scelionidae], parasite of eggs of locusts and grasshoppers [Ort.: Acrididae], Entomophaga, 1981, 26, 349-355Google Scholar

  • [135] Green A.J., Sánchez M.I., Passive internal dispersal of insect larvae by migratory birds, Biol. Lett. 2006, 2, 55-57CrossrefGoogle Scholar

  • [136] Guix J.C., Ruiz X., Weevil larvae dispersal by guans in southeastern Brazil, Biotropica, 1997, 29, 522-525CrossrefGoogle Scholar

  • [137] Magsig-Castillo J., Morse J.G., Walker G.P., Bi J.L, Rugman-Jones P.F., Stouthamer, R., Phoretic dispersal of armored scale crawlers (Hemiptera: Diaspididae), J. Econ. Entomol., 2010, 103, 1172-1179CrossrefGoogle Scholar

  • [138] Gullan, P.J., Cockburn A., Sexual dichronism and intersexual phoresy in gall-forming coccoids, Oecologia, 1986, 68, 632-634CrossrefGoogle Scholar

  • [139] Dingle H., Animal migration: Is there a common migratory syndrome? J. Ornith., 2006,147, 212-220Google Scholar

  • [140] Drake V.A., Gatehouse A.G., Farrow, R.A., Insect migration: a holistic conceptual model. Pages 427-457 in Drake V.A., Gatehouse A.G. (Eds), Insect migration: tracking resources through space and time, Cambridge University Press, Cambridge, UK, 1995 Google Scholar

About the article

Received: 2013-11-18

Accepted: 2013-12-16

Published Online: 2014-04-24

Published in Print: 2014-01-01

Citation Information: Animal Migration, Volume 2, Issue 1, ISSN (Online) 2084-8838, DOI: https://doi.org/10.2478/ami-2014-0002.

Export Citation

© 2014 Don R. Reynolds et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kate A. Schofield, Laurie C. Alexander, Caroline E. Ridley, Melanie K. Vanderhoof, Ken M. Fritz, Bradley C. Autrey, Julie E. DeMeester, William G. Kepner, Charles R. Lane, Scott G. Leibowitz, and Amina I. Pollard
JAWRA Journal of the American Water Resources Association, 2018
European Journal of Entomology, 2017, Volume 114, Page 554
Yoriko Saeki, Soichiro Tani, Katsuto Fukuda, Shun-ichiro Iwase, Yuma Sugawara, Midori Tuda, and Masami Takagi
The Science of Nature, 2016, Volume 103, Number 1-2

Comments (0)

Please log in or register to comment.
Log in