Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

Open Access
See all formats and pricing
More options …

Individual variation in migratory path and behavior among Eastern Lark Sparrows

Jeremy D. Ross
  • Corresponding author
  • Oklahoma Biological Survey, University of Oklahoma, 111 E. Chesapeake Street, Norman, Oklahoma, U.S.A. 73019
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eli S. Bridge
  • Oklahoma Biological Survey, University of Oklahoma, 111 E. Chesapeake Street, Norman, Oklahoma, U.S.A. 73019
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mark J. Rozmarynowycz
  • Department of Biological Sciences, 216 Life Sciences Building, Bowling Green State University, Bowling Green, Ohio, U.S.A. 43403
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Verner P. Bingman
  • Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, 255 Psychology Building, Bowling Green State University, Bowling Green, Ohio, U.S.A. 43403
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-24 | DOI: https://doi.org/10.2478/ami-2014-0003


Two general migration strategies prevail among temperate-breeding migratory songbirds of North America. Most “Eastern” birds migrate relatively directly from breeding to wintering grounds immediately after molting, whereas a substantial proportion of “Western” species depart breeding grounds early, and molt during extended migratory stopovers before reaching wintering areas. The Lark Sparrow is one of a few Western Neotropical migrants with a breeding range that extends into regions dominated by Eastern species. We sought to determine whether Eastern Lark Sparrows migrated in a manner consistent with Western conspecifics or follow typical Eastern songbird migratory patterns. To do so, we tracked individual Eastern Lark Sparrows equipped with geolocators between their breeding grounds in Ohio and their unknown wintering locations. Data from three Ohio Lark Sparrows revealed 1) individual variation in the duration and directness of autumn migrations, 2) autumn departures that consistently preceded molt, 3) wintering grounds in the central highlands of Mexico, and 4) brief and direct spring migrations. These observations suggest that eastern populations of prevailingly Western migrants, such as Lark Sparrows, may be behaviorally constrained to depart breeding grounds before molt, but may facultatively adjust migration en route.

Keywords: geolocators; site fidelity; molt; Neotropical migrant; Chondestes grammacus


  • [1] Leu M., Thompson C.W., The potential importance of migratory stopover sites as flight feather molt staging areas: a review for Neotropical migrants, Biol. Cons., 2002, 106, 45–56 Google Scholar

  • [2] Rohwer S., L.K. Butler, D. Froehlich, Ecology and demography of east-west differences in molt scheduling of Neotropical migrant Passerines, In: Greenberg R., Marra P.P. (Eds.), Birds of two worlds: the ecology and evolution of migration, John Hopkins University Press, Baltimore, MD, 2005 Google Scholar

  • [3] Pyle P., Leitner W.A., Lozano-Angulo L., Avilez-Teran F., Swanson H., Limón E.G., et al., Temporal, spatial, and annual variation in the occurrence of molt-migrant Passerines in the Mexican Monsoon Region, Condor, 2009, 111, 583–590 Web of ScienceGoogle Scholar

  • [4] Rohwer S., Irwin D.E., Molt, orientation, and avian speciation, Auk, 2011, 128, 419–425 Web of ScienceGoogle Scholar

  • [5] Adams D.K., Comrie A.C., The North American monsoon, Bull. Am. Meteorol. Soc., 1997, 78, 2197–2213 Google Scholar

  • [6] Martin J.W., Parrish J.R., Lark Sparrow (Chondestes grammacus), In: Poole A., Gill F. (Eds.), The Birds of North America, no. 488, The Birds of North America, Philadelphia, PA, 2000 Google Scholar

  • [7] Ross J.D., Bouzat J.L., Genetic and morphometric diversity in the Lark Sparrow (Chondestes grammacus) suggest discontinuous clinal variation across major breeding regions associated with previously characterized subspecies, The Auk: Ornithological Advances, 2014, 131, 298-313 Web of ScienceGoogle Scholar

  • [8] Bridge E.S., Kelly J.F., Contina A., Gabrielson R.M., MacCurdy R.B., Winkler D.W., Advances in tracking small migratory birds: a technical review of light-level geolocation, J. Field Orn., 2013, 84, 121–37 Google Scholar

  • [9] McKinnon E.A., Fraser K.C., Stutchbury B.J.M., New discoveries in landbird migration using geolocators, and a flight plan for the future, The Auk, 2013, 130, 211–22 Web of ScienceGoogle Scholar

  • [10] Delmore K.E., Fox J.W., Irwin D.E., Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators, Proc. R. Soc. Lond. B Biol. Sci., 2012, 279, 4582–4589 Web of ScienceGoogle Scholar

  • [11] Contina A., Bridge E.S., Seavy N.E., Duckles J.M., Kelly J.F., Using geologgers to investigate bimodal isotope patterns in Painted Buntings (Passerina ciris), Auk, 2013, 130, 265–272 Web of ScienceGoogle Scholar

  • [12] Jahn A.E., Cueto V.R., Fox J.W., Husak M.S., Kim D.H., Landoll D.V., et al., Migration timing and wintering areas of three species of flycatchers (Tyrannus) breeding in the Great Plains of North America, The Auk, 2013, 130, 247–57 Google Scholar

  • [13] Rappole J.H., Tipton A.R., New harness design for attachment of radio transmitters to small Passerines, J. Field Orn., 1991, 62, 335–337 Google Scholar

  • [14] Lisovski S., Hahn S., GeoLight – processing and analysing light-based geolocator data in R, Methods Ecol. Evol., 2012, 3, 1055–1059 Web of ScienceGoogle Scholar

  • [15] Sumner M.D., Wotherspoon S.J., Hindell M.A., Bayesian estimation of animal movement from archival and satellite tags, PLoS ONE, 2009, 4, e7324 Google Scholar

  • [16] CEC (Commission for Environmental Cooperation), Ecological regions of North America: Toward a common perspective, Commission for Environmental Cooperation, Montreal, Canada, 1997 Google Scholar

  • [17] Cartron J.E., Ceballos G., Felger R.S. (Eds.), Biodiversity, ecosystems, and conservation in northern Mexico, Oxford University Press, New York, 2005 Google Scholar

  • [18] Nilsson C., Klaassen R.H.G., Alerstam T., Differences in speed and duration of bird migration between spring and autumn, Am. Nat., 2013, 181, 837–845 Web of ScienceGoogle Scholar

  • [19] Ginn H.B., Melville D.S., Moult in Birds, BTO Guide 19, British Trust for Ornithologists, Tring, UK, 1983 Google Scholar

  • [20] Pyle P., Identification guide to North American birds. Part I. Columbidae to Ploceidae. Slate Creek Press, Bolinas, CA, 1997 Google Scholar

  • [21] Rohwer S., Molt intensity and conservation of a molt migrant (Passerina ciris) in northwest Mexico, Condor, 2013, 115, 421–433 Web of ScienceGoogle Scholar

  • [22] Berthold P., Querner U., Genetic basis of migratory behavior in European warblers, Science, 1981, 212, 77-79 Google Scholar

  • [23] Ketterson E.D., Nolan V. Jr., The evolution of differential bird migration, Current Ornithology, 1983, 1, 357–402 Google Scholar

  • [24] Helbig A.J., SE- and SW-migrating Blackcap (Sylvia atricapilla) populations in Central Europe: orientation of birds in the contact zone, J. Evol. Biol., 1991, 4, 657–670 Google Scholar

  • [25] Berthold P., Helbig A.J., Mohr G., Querner U., Rapid microevolution of migratory behaviour in a wild bird species, Nature, 1992, 360, 668–70 Google Scholar

  • [26] Berthold P., Pulido F., Heritability of migratory activity in a natural bird population, Proc. R. Soc. Lond. B Biol. Sci., 1994, 257, 311–315 Google Scholar

  • [27] Irwin D.E., Bensch S., Price T.D., Speciation in a ring, Nature, 2001, 409, 333–337 Google Scholar

  • [28] Berthold P., Genetic basis and evolutionary aspects of bird migration, Adv. Study Behav., 2003, 33, 175–229 Google Scholar

  • [29] Bearhop S., Fiedler W., Furness R.W., Votier S.C., Waldron S., Newton J., et al., Assortative mating as a mechanism for rapid evolution of a migratory divide, Science, 2005, 310, 502–504 Google Scholar

  • [30] Irwin D.E., Bensch S., Irwin J.H., Price T.D., Speciation by distance in a ring species, Science, 2005, 307, 414–416 Google Scholar

  • [31] Pulido F., The genetics and evolution of avian migration, BioScience, 2007, 57, 165–174 Web of ScienceGoogle Scholar

  • [32] Rolshausen G., Segelbacher G., Hobson K.A., Schaefer H.M., Contemporary evolution of reproductive isolation and phenotypic divergence in sympatry along a migratory divide, Curr. Biol., 2009, 19, 2097–2101 Web of ScienceGoogle Scholar

  • [33] Newton I., The migration ecology of birds, Elsevier, Oxford, UK, 2008 Google Scholar

About the article

Received: 2013-10-29

Accepted: 2014-01-14

Published Online: 2014-06-24

Citation Information: Animal Migration, Volume 2, Issue 1, ISSN (Online) 2084-8838, DOI: https://doi.org/10.2478/ami-2014-0003.

Export Citation

© 2014 Jeremy D. Ross et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Roman Fuchs, Verner P. Bingman, Jeremy D. Ross, and Gustav Bernroider
NeuroReport, 2015, Volume 26, Number 17, Page 1011
Henry M. Streby, Tara L. McAllister, Sean M. Peterson, Gunnar R. Kramer, Justin A. Lehman, and David E. Andersen
The Condor, 2015, Volume 117, Number 2, Page 249
Steffen Hahn, Tamara Emmenegger, Simeon Lisovski, Valentin Amrhein, Pavel Zehtindjiev, and Felix Liechti
Ecology and Evolution, 2014, Volume 4, Number 21, Page 4150

Comments (0)

Please log in or register to comment.
Log in