Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-8838
See all formats and pricing
More options …

Prolonged stopover duration characterises migration strategy and constraints of a long-distance migrant songbird

Debora Arlt / Peter Olsson / James W Fox / Matthew Low
  • Corresponding author
  • Department of Ecology, Swedish University of Agricultural Sciences, Box 7004, 75007 Uppsala, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomas Pärt
  • Corresponding author
  • Department of Ecology, Swedish University of Agricultural Sciences, Box 7004, 75007 Uppsala, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-17 | DOI: https://doi.org/10.1515/ami-2015-0002

Abstract

Stopover behaviour is a central element of migration strategies. But in recent geolocator studies, despite now being able to track individual songbirds during their entire migration, their stopover behaviour has received little attention. We used light-sensitive geolocators to identify the migratory routes and schedules of 12 northern wheatears (Oenanthe oenanthe) breeding in Sweden. Three geolocators collected temperature data complementing inferences from light data by providing additional information on behaviour during migration. The wheatears performed a slow migration with considerable stopover time (84%/76% of autumn/spring migration), with short stops while traveling through Europe, and a prolonged stopover period in both autumn and spring in the Mediterranean region. Spring migration was faster than autumn migration, mainly because of decreased stopover time. Migration routes and time schedules were similar to those from a German breeding population. Compared to wheatears breeding in Alaska with a three-fold migration distance, Swedish wheatears spent more time during stopovers during autumn and spring migration, suggesting less time constraints and potential flexibility in migration schedules. The finding of prolonged stopovers, similar to other recent geolocator studies, shows that temporary residency periods may be common. This changes our current view on stopover ecology to one where temporary residency periods are part of spatio-temporal strategies optimising resource use during the entire annual cycle.

This article offers supplementary material which is provided at the end of the article.

Keywords: geolocator; light geolocation; stop-over; annual cycle; Oenanthe oenanthe; temporary residency; migration schedule; time constraint; migratory connectivity; wintering area

References

  • [1] Dingle H., Migration. The Biology of Life on the Move, 2nd ed., Oxford University Press, 2014 Google Scholar

  • [2] Alerstam T., Bird flight and optimal migration, Trends Ecol. & Evol., 1991, 6, 210–215 Google Scholar

  • [3] Alerstam T., Optimal bird migration revisited, J. Ornithol., 2011, 152 (Suppl 1), S5–S23 Google Scholar

  • [4] Kaiser A., Stopover strategies in birds: a review of methods for estimating stopover length, Bird Study, 1999, 46(S1), S299-S308 Google Scholar

  • [5] McKinnon E.A., Fraser K.C., Stutchbury B.J.M., New Discoveries in Landbird Migration using Geolocators, and a Flight Plan for the Future, Auk, 2013, 130, 211-222 Google Scholar

  • [6] Stanley C.Q., MacPherson M., Fraser K.C., McKinnon E.A., Stutchbury B.J.M., Repeat Tracking of Individual Songbirds Reveals Consistent Migration Timing but Flexibility in Route, PLoS ONE, 2012, 7(7), e40688, DOI: 10.1371/journal. pone.0040688 Google Scholar

  • [7] Conklin J.R., Battley P.F., Potter M.A., Absolute Consistency: Individual versus Population Variation in Annual-Cycle Schedules of a Long-Distance Migrant Bird. PLoS ONE, 2013, 8(1), e54535. DOI: 10.1371/journal.pone.0054535 Google Scholar

  • [8] Liechti F., Witvliet W., Weber R. Bächler E., First evidence of a 200-day non-stop flight in a bird, Nature Communications, 2013, 4, 2554. DOI: 10.1038/ncomms3554 CrossrefGoogle Scholar

  • [9] Weimerskirch H., Wilson R.P., Guinet C., Koudil M.,Use of seabirds to monitor sea-surface temperatures and to validate satellite remote-sensing measurements in the Southern Ocean, Marine Ecology Progress Series, 1995, 126, 299–303 Google Scholar

  • [10] Thiebot J.-B., Pinaud D., Quantitative method to estimate species habitat use from light-based geolocation data, Endangered Species Research, 10, 341–353. Google Scholar

  • [11] Fransson T., Hall-Karlsson S., Swedish Bird Ringing Atlas. Volume 3, Passerines, Swedish Museum of Natural History, 2008 Google Scholar

  • [12] Schmaljohann H., Buchmann M., Fox J.W., Bairlein F., Tracking migration routes and the annual cycle of a trans-Sahara songbird migrant, Behav. Ecol. Sociobiol., 2012, 66, 915-922 Google Scholar

  • [13] Schmaljohann H., Fox J.W., Bairlein F., Phenotypic response to environmental cues, orientation and migration costs in songbirds flying halfway around the world, Anim. Behav., 2012, 84, 623-640 Google Scholar

  • [14] Pärt T., The effects of territory quality on age-dependent reproductive performance in the northern wheatear, Oenanthe Oenanthe, Anim. Behav., 2001, 62, 379–388 CrossrefGoogle Scholar

  • [15] Arlt D., Pärt T., Nonideal breeding habitat selection: A mismatch between preference and breeding success, Ecology, 2007, 88, 792-801 Google Scholar

  • [16] Arlt D., Pärt T., Post-breeding information gathering and breeding territory shifts in northern wheatears, J. Anim. Ecol., 2008, 77, 211-219 Google Scholar

  • [17] Arlt D., Low M., Pärt T., Effect of geolocators on migration and subsequent breeding performance of a long-distance migrant, PLoS ONE, 2013, 8(12), e82316, DOI: 10.1371/journal. pone.0082316 Google Scholar

  • [18] Rappole J.H., Tipton A.R., New Harness Design for Attachment of Radio Transmitters to Small Passerines, J. Field Ornithol., 1990, 62, 335-337 Google Scholar

  • [19] Lisovski S., Hewson C.M., Klaassen R.H.G., Korner-Nievergelt F., Kristensen M.W., Hahn S., Geolocation by light: accuracy and precision affected by environmental factors, Meth. Ecol. Evol., 2013, 3, 603–612 Google Scholar

  • [20] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2013, URL http://www.R-project.org/ Google Scholar

  • [21] Lisovski S., Hahn S., GeoLight - processing and analyzing light-based geolocation in R, Meth. Ecol. Evol., 2012, 3, 1055-1059 Google Scholar

  • [22] Meeus J., Astronomical Algorithms, Willman-Bell, Inc., Richmond, 1991 Google Scholar

  • [23] Ekstrom P., An advance in geolocation by light, Memoirs of the National Institute of Polar Research, 2004, Special Issue 58, 210-226 Google Scholar

  • [24] Schaub M., Jenni L., Body mass of six long-distance migrant passerine species along the autumn migration route, J. Ornithol., 2000, 141, 441–460 Google Scholar

  • [25] Salewski V., Schmaljohann H., Liechti F., Spring passerine migrants stopping over in the Sahara are not fall-outs, J. Ornithol., 2010, 51, 371-378 Google Scholar

  • [26] Maggini I., Bairlein F., Body condition and stopover of trans- Saharan spring migrant passerines caught at a site in southern Morocco, Ringing & Migration, 2011, 26, 31-37 Google Scholar

  • [27] Jahn A.E., Cueto V.R., Fox J.W., Husak M.S., Kim D.H., Landoll D.V., et al., Migration timing and wintering areas of three species of flycatchers (Tyrannus) breeding in the Great Plains of North America, Auk, 2013, 130, 247–257 Google Scholar

  • [28] Stutchbury B.J.M., Gow E.A., Done T., MacPherson M., Fox J.W., Afanasyev V., Effects of post-breeding moult and energetic condition on timing of songbird migration into the tropics, Proc. R. Soc. Lond. B, 2011, 278, 131–137 Google Scholar

  • [29] Åkesson S., Klaassen R., Holmgren J., Fox J.W., Hedenström A., Migration routes and strategies in a highly aerial migrant, the Common Swift Apus apus, revealed by light-level geolocators, PLoS ONE, 2012, 7(7), e41195 Google Scholar

  • [30] Tøttrup A.P., Klaassen R.H.G., Strandberg R., Thorup K., Willemoes K.M., Søgaard Jørgensen P., et al., The annual cycle of a trans-equatorial Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and spring migration, Proc. R. Soc. Lond. B, 2012, 279, 1008-1016, DOI: 10.1098/rspb.2011.1323 CrossrefGoogle Scholar

  • [31] Lemke H.W., Tarka M., Klaassen R.H.G., Åkesson M., Bensch S., Hassequist D., et al., Annual Cycle and Migration Strategies of a Trans-Saharan Migratory Songbird: A Geolocator Study in the Great Reed Warbler, PLoS ONE, 2013, 8(10), e79209, DOI: 10.1371/journal.pone.0079209 Google Scholar

  • [32] Willemoes M., Strandberg R., Klaassen R.H.G., Tøttrup A.P., Vardanis Y., Howey P.W., et al., Narrow-Front Loop Migration in a Population of the Common Cuckoo Cuculus canorus, as Revealed by Satellite Telemetry, PLoS ONE, 2014, 9(1), e83515, DOI: 10.1371/journal.pone.0083515 Google Scholar

  • [33] Eraud C., Rivière M., Lormée H., Fox J.W., Ducamp J.-J., Boutin J.-M., Migration Routes and Staging Areas of Trans-Saharan Turtle Doves Appraised from Light-Level Geolocators, PLoS ONE, 2013, 8(3), e59396, DOI: 10.1371/journal.pone.0059396 Google Scholar

  • [34] Callo P.A., Morton E.S., Stutchbury B.J.M, Prolonged spring migration in the Red-eyed Vireo (Vireo olivaceus), Auk, 2013, 130, 240–246 Google Scholar

  • [35] Stach R., Jakobsson S., Kullberg C., Fransson T., Geolocators reveal three consecutive wintering areas in the thrush nightingale, Anim. Migr., 2012, 1, 1-7, DOI: 10.2478/ ami-2012-0001 CrossrefGoogle Scholar

  • [36] Schmaljohann H., Liechti F., Bruderer B., Songbird migration across the Sahara – the non-stop hypothesis rejected!, Proc. R. Soc. Lond. B, 2007, 274, 735–739 Google Scholar

  • [37] Dierschke V., Delingat J., Stopover behaviour and departure decision of northern wheatears, Oenanthe oenanthe, facing different onward non-stop flight distances, Behav. Ecol. Sociobiol., 2001, 50, 535-545. DOI: 10.1007/s002650100397 CrossrefGoogle Scholar

  • [38] Dierschke V., Mendel B., Schmaljohann H., Differential timing of spring migration in Northern Wheatears Oenanthe oenanthe: hurried males or weak females?, Behav. Ecol. Sociobiol., 2005, 57, 470-480 Google Scholar

  • [39] Ottosson U., Sandberg R., Pettersson J., Orientation cage and release experiments with migratory wheatears (Oenanthe oenanthe) in Scandinavia and Greenland: the importance of visual cues, Ethology, 1990, 86, 57–70 Google Scholar

  • [40] Schmaljohann H, Dierschke V., Optimal bird migration and predation risk: a field experiment with northern wheatears Oenanthe Oenanthe, J. Anim. Ecol., 2005, 74, 131-138 Google Scholar

  • [41] Lindström Å., Maximum fat deposition rates in migrating birds, Ornis Scand., 1991, 22, 12-19 CrossrefGoogle Scholar

  • [42] Fransson T., Barboutis C., Mellroth M., Akriotis T., When and where to fuel before crossing the Sahara desert–extended stopover and migratory fuelling in first‐year garden warblers Sylvia borin, J. Avian Biol., 2008, 39, 133–138 Google Scholar

  • [43] Gannes L.Z., Mass change pattern of blackcaps refueling during spring migration: evidence for physiological limitations to food assimilation, Condor, 2002, 104, 231-239 Google Scholar

  • [44] Bauchinger U., Kolb H., Afik D., Pinshow B., Biebach H., Blackcap Warblers Maintain Digestive Efficiency by Increasing Digesta Retention Time on the First Day of Migratory Stopover, Physiol. Biochem. Zool., 2009, 82, 541-548 Google Scholar

  • [45] McWilliams S.R., Karasov W.H., Spare capacity and phenotypic flexibility in the digestive system of a migratory bird: defining the limits of animal design, Proc. R. Soc. Lond. B, 2014, 281, 20140308, DOI: 10.1098/rspb.2014.0308 CrossrefGoogle Scholar

  • [46] Delingat J., Dierschke V., Schmaljohann H., Mendel B., Bairlein F., Daily stopovers as optimal migration strategy in a long-distance migrating passerine: the Northern Wheatear Oenanthe Oenanthe, Ardea, 2006, 94, 593–605 Google Scholar

  • [47] Wojciechowski M.S., Yosef R., Pinshow B., Body composition of north and southbound migratory blackcaps is influenced by the lay-of-the-land ahead, J. Avian. Biol., 2014, 45, 264-272 Google Scholar

  • [48] Zwarts L., Bijlsma R.G., van der Kamp J., Wymenga E., Living on the edge: wetlands and birds in a changing Sahel, Zeist: KNNV Publishing, 2009 Google Scholar

  • [49] Limiñana R., Romero M., Mellone U., Urios V., Mapping the migratory routes and wintering areas of Lesser Kestrels Falco naumanni: new insights from satellite telemetry, Ibis, 2012, 154, 389–399 Google Scholar

  • [50] Newton I., The Migration Ecology of Birds, Academic Press, London, 2008 Google Scholar

  • [51] Shariatinajafabadi M., Wang T., Skidmore A.K., Toxopeus AG, Kölzsch A, Nolet B.A., et al., Migratory Herbivorous Waterfowl Track Satellite-Derived Green Wave Index. PLoS ONE, 2014, 9(9), e108331, DOI: 10.1371/journal.pone.0108331 Google Scholar

  • [52] Kokko H., Competition for early arrival in migratory birds, J. Anim. Ecol., 1999, 68, 940–950 Google Scholar

  • [53] Smith R.J., Moore F.R., Arrival timing and seasonal reproductive performance in a long-distance migratory landbird, 2005, Behav. Ecol. Sociobiol., 57, 231–239 Google Scholar

  • [54] Verhulst S., Nilsson J.-Å., The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding, Phil. Trans. R. Soc. Lond. B, 2008, 363, 399–410 Google Scholar

  • [55] Schaub M., Jenni L., Stopover durations of three warbler species along their autumn migration route, Oecologia, 2001, 128, 217–227 Google Scholar

  • [56] Nilsson C., Klaassen R.H.G., Alerstam T., Differences in speed and duration of bird migration between spring and autumn, Am. Nat., 2013, 181, 837-845 Google Scholar

  • [57] Arlt D., Pärt T., Sex-biased dispersal: a result of a sex-difference in breeding site availability, Am. Nat., 2008, 171, 844-850 Google Scholar

  • [58] van Oosten H.H., Versluijs R., van Wijk R., Two Dutch Northern wheatears in the Sahel: unravelling migration routes and wintering areas, Limosa, 2014, 87, 168-172 Google Scholar

  • [59] Fraser K.C., Stutchbury B.J.M., Silverio C., Kramer P.M., Barrow J., et al., Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore, Proc. R. Soc. B, 2012, 279, 4901-4906 Google Scholar

  • [60] Seavy N.E., Humple D.L., Cormier R.L., Gardali T., Establishing the Breeding Provenance of a Temperate-Wintering North American Passerine, the Golden-Crowned Sparrow, Using Light-Level Geolocation, PLoS ONE, 2012, 7(4), e34886, DOI: 10.1371/journal.pone.0034886 Google Scholar

  • [61] Stanley C.Q., McKinnon E.A., Fraser K., Macpherson M.P., Casbourn G., Friesen L., et al., Connectivity of Wood Thrush Breeding, Wintering, and Migration Sites Based on Range-Wide Tracking, Cons. Biol., 2015, 29, 164–174 CrossrefGoogle Scholar

  • [62] Hahn S., Amrhein V., Zehtindijev P., Liechti F., Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird, Oecologia, 2013, 173, 1217-1225 Google Scholar

  • [63] Cresswell W., Migratory connectivity of Palaearctic–African migratory birds and their responses to environmental change: the serial residency hypothesis, Ibis, 2014, published online, DOI: 10.1111/ibi.12168 CrossrefGoogle Scholar

  • [64] Norris R.D., Marra P.P., Seasonal interactions, habitat quality, and population dynamics in migratory birds, Condor, 2007, 109, 535-547 Google Scholar

  • [65] Heckscher C.M., Taylor S.M., Fox J.W., Afanasyev V., Veery (Catharus fuscescens) Wintering Locations, Migratory Connectivity, and a Revision of Its Winter Range using Geolocator Technology, Auk, 2011, 128, 531-542. Google Scholar

  • [66] Cramp S. (Ed.), Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic, Volume V: Tyrant flycatchers to thrushes, Oxford University Press, New York, 1988 Google Scholar

  • [67] Constantini D, Møller A.P., A meta-analysis of the effects of geolocator application on birds, Curr. Zool., 2013, 59, 697-706 Google Scholar

  • [68] Scandolara C., Rubolini D., Ambrosini R., Caprioli M., Hahn S., Liechti F., et al., Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits, J. Avian Biol., 2014, DOI: 10.1111/jav.0041 CrossrefGoogle Scholar

About the article

Received: 2014-12-09

Accepted: 2015-03-22

Published Online: 2015-04-17


Citation Information: Animal Migration, ISSN (Online) 2084-8838, DOI: https://doi.org/10.1515/ami-2015-0002.

Export Citation

© 2015 Debora Arlt et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Cas Eikenaar, Florian Müller, Steffen Kämpfer, and Heiko Schmaljohann
Animal Behaviour, 2016, Volume 117, Page 9
[2]
Kyle G. Horton, Benjamin M. Van Doren, Phillip M. Stepanian, Wesley M. Hochachka, Andrew Farnsworth, and Jeffrey F. Kelly
Scientific Reports, 2016, Volume 6, Number 1
[3]
Cas Eikenaar, Anna Fritzsch, Steffen Kämpfer, and Heiko Schmaljohann
Animal Behaviour, 2016, Volume 112, Page 75

Comments (0)

Please log in or register to comment.
Log in