Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

Open Access
See all formats and pricing
More options …

Environmental factors in migratory route decisions: a case study on Greenlandic Arctic Terns (Sterna paradisaea)

Christopher Michael Hensz
Published Online: 2015-11-11 | DOI: https://doi.org/10.1515/ami-2015-0004


Identification and characterization of seasonal migration routes and stopover sites has been recognized as important to the conservation of migratory species. This project utilizes multiple regression models including circular-linear regression to identify associations between route choice, travel speed, and environmental preferences using trajectory data of migratory Arctic Terns (Sterna paradisaea) and environmental data obtained through remote-sensing techniques. Results of this study suggest that route choice on the southward post-breeding migration route may be more dependent on underlying environment than the northward postwintering migration route. In contrast, travel speed was variably associated with underlying environment between southward and northward migrations, including several differences regarding the impact of interactions between environmental variables. These results reveal the importance of using multiple metrics in the estimation of spatial resistance and highlight conflicts between the theoretical resistance framework of GIS and movement analysis methods.

Keywords : GIS; movement ecology; seasonal migration; spatial resistance; Sterna paradisaea


  • [1] Nathan R., Getz W.M., Revilla E., Holyoak M., Kadmon R., Saltz D., et al., A movement ecology paradigm for unifying organismal movement research, Proc. Natl. Acad. Sci. U. S. A., 2008, 105(49), 19052-19059 CrossrefGoogle Scholar

  • [2] Nakazawa Y., Martínez-Meyer E., Peterson A.T., Navarro- Sigüenza A.G., Evolution of seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae), Proc. R. Soc. Lond. B Biol. Sci., 2004, 271(1544), 1151-1157 Google Scholar

  • [3] Crick, H.Q.P., Migratory wildlife in a changing climate, In: Vagg R., Hepwort H. (Eds.), Migratory Species and Climate Change: Impacts of a Changing Environment on Wild Animals, UNEP/ CMS Secretariat, Bonn, 2006 Google Scholar

  • [4] Desrochers A., Belisle M., Morand-Ferron J., Bourque J., Integrating GIS and homing experiments to study avian movement costs, Landsc. Ecol., 2011, 26(1), 47-58 Google Scholar

  • [5] Driezen K., Adriaensen F., Rondinini C., Doncaster C.P., Matthysen E., Evaluating least-cost model predictions with empirical dispersal data: a case-study using radiotracking data of hedgehogs (Erinaceus europaeus), Ecol. Model., 2007, 209(2-4), 314-322 Google Scholar

  • [6] Forester J.D., Ives A.R., Turner M.G., Anderson D.P., Fortin D., Beyer H.L., et al., State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park, Ecol. Monogr., 2007, 77(2), 285-299 CrossrefGoogle Scholar

  • [7] Mandel J.T., Bohrer G., Winkler D.W., Barber D.R., Houston C.S., Bildstein K.L., Migration path annotation: crosscontinental study of migration-flight response to environmental conditions,Ecol. Appl., 2011, 21(6), 2258-2268 CrossrefGoogle Scholar

  • [8] O’Brien D., Manseau M., Fall A., Fortin M.-J., Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory, Biol. Conserv., 2006, 130(1), 70-83 Google Scholar

  • [9] Schick R.S., Loarie S.R., Colchero F., Best B.D., Boustany A., Conde D.A., et al., Understanding movement data and movement processes: current and emerging directions, Ecol. Lett., 2008, 11(12), 1338-1350 CrossrefGoogle Scholar

  • [10] Adriaensen F., Chardon J.P., De Blust G., Swinnen E., Villalba S., Gulinck H., et al., The application of ‘least-cost’ modelling as a functional landscape model, Landsc. Urban Plann., 2003, 64(4), 233-247 Google Scholar

  • [11] Beier P., Spencer W., Baldwin R.F., McRae B.H., Toward best practices for developing regional connectivity maps, Conserv. Biol., 2011, 25(5), 879-892 CrossrefGoogle Scholar

  • [12] Chetkiewicz C.L.B., Boyce M.S., Use of resource selection functions to identify conservation corridors, J. Appl. Ecol., 2009, 46(5), 1036-1047 CrossrefGoogle Scholar

  • [13] Epps C.W., Wehausen J.D., Bleich V.C., Torres S.G., Brashares J.S., Optimizing dispersal and corridor models using landscape genetics, J. Appl. Ecol., 2007, 44(4), 714-724 CrossrefGoogle Scholar

  • [14] Spear S.F., Balkenhol N., Fortin M.-J., McRae B.H., Scribner K.I.M., Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis, Mol. Ecol., 2010, 19(17), 3576-3591 CrossrefGoogle Scholar

  • [15] Beier P., Majka D.R., Spencer W.D., Forks in the road: choices in procedures for designing wildland linkages, Conserv. Biol., 2008, 22(4), 836-851 CrossrefGoogle Scholar

  • [16] Felicisimo A.M., Munoz J., Gonzalez-Solis J., Ocean surface winds drive dynamics of transoceanic aerial movements, PLoS One, 2008, 3(8), 7 Google Scholar

  • [17] González-Solís J., Felicísimo A., Fox J.W., Afanasyev V., Kolbeinsson Y., Muñoz J.s., Influence of sea surface winds on shearwater migration detours, Mar. Ecol. Prog. Ser., 2009, 391, 221-230 Google Scholar

  • [18] Turchin P., Quantitative analysis of movement. Sinnauer Associates, Sunderland, MA, USA, 1998 Google Scholar

  • [19] Fortin M.-J., Dale M.R.T. Spatial analyisis: a guide for ecologists, Cambridge University Press, Cambridge, UK, 2005 Google Scholar

  • [20] Egevang C., Stenhouse I.J., Phillips R.A., Petersen A., Fox J.W., Silk J.R.D., Tracking of Arctic Terns Sterna paradisaea reveals longest animal migration, Proc. Natl. Acad. Sci. U. S. A., 2010, 107(5), 2078-2081 CrossrefGoogle Scholar

  • [21] Gudmundsson G.A., Alerstam T., Larsson B., Radar observations of northbound migration of the Arctic tern, Sterna paradisaea, at the Antarctic Peninsula, Antarct. Sci., 1992, 4(2), 163-170 Google Scholar

  • [22] Møller A.P., Flensted-Jensen E., Mardal W., Dispersal and climate change: a case study of the Arctic tern Sterna paradisaea, Glob. Change Biol., 2006, 12(10), 2005-2013 Google Scholar

  • [23] Fijn R.C., Hiemstra D., Phillips R.A., Winden J.v.d., Arctic Terns Sterna paradisaea from the Netherlands migrate record distances across three oceans to Wilkes Land, East Antarctica, Ardea, 2013, 101(1), 3-12 CrossrefGoogle Scholar

  • [24] McKnight A., Allyn A.J., Duffy D.C., Irons D.B., ‘Stepping stone’ pattern in Pacific Arctic tern migration reveals the importance of upwelling areas, Mar. Ecol. Prog. Ser., 2013, 491, 253-264 Google Scholar

  • [25] Duffy D.C., Mcknight A., Irons D.B., Trans-Andean passage of migrating Arctic Terns over Patagonia, Mar. Ornithol., 2013, 41, 155-159 Google Scholar

  • [26] Shaffer S.A., Tremblay Y., Weimerskirch H., Scott D., Thompson D.R., Sagar P.M., et al., Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer, Proc. Natl. Acad. Sci. U. S. A., 2006, 103(34), 12799-12802 CrossrefGoogle Scholar

  • [27] Raymond B., Shaffer S.A., Sokolov S., Woehler E.J., Costa D.P., Einoder L., et al., Shearwater foraging in the Southern Ocean: the roles of prey availability and winds, PLoS One, 2010, 5(6), e10960 Google Scholar

  • [28] Dias M.P., Granadeiro J.P., Phillips R.A., Alonso H., Catry P., Breaking the routine: individual Cory’s shearwaters shift winter destinations between hemispheres and across ocean basins, Proc. R. Soc. Biol. Sci. Ser. B, 2011, 278(1713), 1786-1793 Google Scholar

  • [29] Croxall J.P., Silk J.R.D., Phillips R.A., Afanasyev V., Briggs D.R., Global circumnavigations: tracking year-round ranges of nonbreeding albatrosses, Science, 2005, 307(5707), 249-250 Google Scholar

  • [30] Catry P., Dias M.P., Phillips R.A., Granadeiro J.P., Different means to the same end: long-distance migrant seabirds from two colonies differ in behaviour, despite common wintering grounds,PLoS One, 2011, 6(10), e26079 Google Scholar

  • [31] Phillips R.A., Silk J.R.D., Croxall J.P., Afanasyev V., Briggs D.R., Accuracy of geolocation estimates for flying seabirds, Mar. Ecol., 2004, 266, 265-272 Google Scholar

  • [32] Bridge E.S., Kelly J.F., Contina A., Gabrielson R.M., MacCurdy R.B., Winkler D.W., Advances in tracking small migratory birds: a technical review of light-level geolocation, J. Field Ornithol., 2013, 84(2), 121-137 CrossrefGoogle Scholar

  • [33] Lisovski S., Hewson C.M., Klaassen R.H.G., Korner-Nievergelt F., Kristensen M.W., Hahn S., Geolocation by light: accuracy and precision affected by environmental factors, Methods Ecol. Evol., 2012, 3(3), 603-612 Google Scholar

  • [34] Atlas R., R.N. Hoffman, S.C. Bloom, J.C. Jusem, Ardizzone J., A multiyear global surface wind velocity data set using SSM/I wind observations, Bull. Am. Met. Soc., 1996, 77, 869-882 Google Scholar

  • [35] Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S., Schlax M.G., Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 2007, 20(22), 5473-5496 Google Scholar

  • [36] Behrenfeld M.J., Falkowski P.G., Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 1997, 42(1), 1-20 CrossrefGoogle Scholar

  • [37] Fisher N.I., Lee A.J., Regression models for an angular response, Biometrics, 1992, 48(3), 665-677 CrossrefGoogle Scholar

  • [38] Thorup K., Bisson I.-A., Bowlin M.S., Holland R.A., Wingfield J.C., Ramenofsky M., et al., Evidence for a navigational map stretching across the continental U.S. in a migratory songbird, Proc. Natl. Acad. Sci. U. S. A., 2007, 104(46), 18115-18119 CrossrefGoogle Scholar

  • [39] Zuur A.F., Ieno E.N., Smith G.M., Analysing ecological data. Statistics for biology and health, Springer-Verlag, New York, 2007 Google Scholar

  • [40] Lewis F., Butler A., Gilbert L., A unified approach to model selection using the likelihood ratio test, Methods Ecol. Evol., 2011, 2(2), 155-162 Google Scholar

  • [41] Arnold T.W., Uninformative parameters and model selection using Akaike’s Information Criterion, The Journal of Wildlife Management, 2010, 74(6), 1175-1178 Google Scholar

  • [42] Nilsson C., Klaassen R.H.G., Alerstam T., Differences in speed and duration of bird migration between spring and autumn, Am. Nat., 2013, 181(6), 837-845 Google Scholar

  • [43] Gastineau G., Le Treut H., Li L., Hadley circulation changes under global warming conditions indicated by coupled climate models, Tellus Ser. A-Dyn. Meterol. Oceanol., 2008, 60(5), 863-884 Google Scholar

  • [44] Weimerskirch H., Louzao M., de Grissac S., Delord K., Changes in wind pattern alter albatross distribution and life-history traits, Science, 2012, 335(6065), 211-214 Google Scholar

  • [45] Woollings T., Blackburn M., The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns, J. Clim., 2012, 25(3), 886-902 Google Scholar

  • [46] Drent R.H., The timing of birds’ breeding seasons: the Perrins hypothesis revisited especially for migrants, Ardea, 2006, 94(3), 305-322 Google Scholar

  • [47] Møller A.P., Rubolini D., Lehikoinen E., Populations of migratory bird species that did not show a phenological response to climate change are declining, Proc. Natl. Acad. Sci. U. S. A., 2008, 105(42), 16195-16200 CrossrefGoogle Scholar

  • [48] van Etten J., Hijmans R.J., A geospatial modelling approach integrating archaeobotany and genetics to trace the origin and dispersal of domesticated plants, PLoS One, 2010, 5(8), e12060 Google Scholar

  • [49] Jonsen I.D., Basson M., Bestley S., Bravington M.V., Patterson T.A., Pedersen M.W., et al., State-space models for bio-loggers: a methodological road map, Deep-Sea Res. Part II-Top. Stud. Oceanogr., 2013, 88-89, 34-46 Google Scholar

  • [50] Newton I., Weather-related mass-mortality events in migrants, Ibis, 2007, 149(3), 453-467 Google Scholar

  • [51] Peterson A., Soberón J., Pearson R.G., Anderson R.P., Martínez- Meyer E., Nakamura M., et al., Ecological niches and geographic distributions. Monographs in population biology. Princeton University Press, Princeton, NJ, USA, 2011 Google Scholar

About the article

Received: 2015-01-19

Accepted: 2015-10-11

Published Online: 2015-11-11

Citation Information: Animal Migration, Volume 2, Issue 1, ISSN (Online) 2084-8838, DOI: https://doi.org/10.1515/ami-2015-0004.

Export Citation

© 2015 Christopher Michael Hensz . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in