Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Animal Migration

Ed. by Davis, Andrew

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
In This Section

Environmental factors in migratory route decisions: a case study on Greenlandic Arctic Terns (Sterna paradisaea)

Christopher Michael Hensz
  • Corresponding author
  • University of Kansas, United States
Published Online: 2015-11-11 | DOI: https://doi.org/10.1515/ami-2015-0004


Identification and characterization of seasonal migration routes and stopover sites has been recognized as important to the conservation of migratory species. This project utilizes multiple regression models including circular-linear regression to identify associations between route choice, travel speed, and environmental preferences using trajectory data of migratory Arctic Terns (Sterna paradisaea) and environmental data obtained through remote-sensing techniques. Results of this study suggest that route choice on the southward post-breeding migration route may be more dependent on underlying environment than the northward postwintering migration route. In contrast, travel speed was variably associated with underlying environment between southward and northward migrations, including several differences regarding the impact of interactions between environmental variables. These results reveal the importance of using multiple metrics in the estimation of spatial resistance and highlight conflicts between the theoretical resistance framework of GIS and movement analysis methods.

Keywords : GIS; movement ecology; seasonal migration; spatial resistance; Sterna paradisaea


  • [1] Nathan R., Getz W.M., Revilla E., Holyoak M., Kadmon R., Saltz D., et al., A movement ecology paradigm for unifying organismal movement research, Proc. Natl. Acad. Sci. U. S. A., 2008, 105(49), 19052-19059 [Crossref]

  • [2] Nakazawa Y., Martínez-Meyer E., Peterson A.T., Navarro- Sigüenza A.G., Evolution of seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae), Proc. R. Soc. Lond. B Biol. Sci., 2004, 271(1544), 1151-1157

  • [3] Crick, H.Q.P., Migratory wildlife in a changing climate, In: Vagg R., Hepwort H. (Eds.), Migratory Species and Climate Change: Impacts of a Changing Environment on Wild Animals, UNEP/ CMS Secretariat, Bonn, 2006

  • [4] Desrochers A., Belisle M., Morand-Ferron J., Bourque J., Integrating GIS and homing experiments to study avian movement costs, Landsc. Ecol., 2011, 26(1), 47-58

  • [5] Driezen K., Adriaensen F., Rondinini C., Doncaster C.P., Matthysen E., Evaluating least-cost model predictions with empirical dispersal data: a case-study using radiotracking data of hedgehogs (Erinaceus europaeus), Ecol. Model., 2007, 209(2-4), 314-322

  • [6] Forester J.D., Ives A.R., Turner M.G., Anderson D.P., Fortin D., Beyer H.L., et al., State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park, Ecol. Monogr., 2007, 77(2), 285-299 [Crossref]

  • [7] Mandel J.T., Bohrer G., Winkler D.W., Barber D.R., Houston C.S., Bildstein K.L., Migration path annotation: crosscontinental study of migration-flight response to environmental conditions,Ecol. Appl., 2011, 21(6), 2258-2268 [Crossref]

  • [8] O’Brien D., Manseau M., Fall A., Fortin M.-J., Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory, Biol. Conserv., 2006, 130(1), 70-83

  • [9] Schick R.S., Loarie S.R., Colchero F., Best B.D., Boustany A., Conde D.A., et al., Understanding movement data and movement processes: current and emerging directions, Ecol. Lett., 2008, 11(12), 1338-1350 [Crossref]

  • [10] Adriaensen F., Chardon J.P., De Blust G., Swinnen E., Villalba S., Gulinck H., et al., The application of ‘least-cost’ modelling as a functional landscape model, Landsc. Urban Plann., 2003, 64(4), 233-247

  • [11] Beier P., Spencer W., Baldwin R.F., McRae B.H., Toward best practices for developing regional connectivity maps, Conserv. Biol., 2011, 25(5), 879-892 [Crossref]

  • [12] Chetkiewicz C.L.B., Boyce M.S., Use of resource selection functions to identify conservation corridors, J. Appl. Ecol., 2009, 46(5), 1036-1047 [Crossref]

  • [13] Epps C.W., Wehausen J.D., Bleich V.C., Torres S.G., Brashares J.S., Optimizing dispersal and corridor models using landscape genetics, J. Appl. Ecol., 2007, 44(4), 714-724 [Crossref]

  • [14] Spear S.F., Balkenhol N., Fortin M.-J., McRae B.H., Scribner K.I.M., Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis, Mol. Ecol., 2010, 19(17), 3576-3591 [Crossref]

  • [15] Beier P., Majka D.R., Spencer W.D., Forks in the road: choices in procedures for designing wildland linkages, Conserv. Biol., 2008, 22(4), 836-851 [Crossref]

  • [16] Felicisimo A.M., Munoz J., Gonzalez-Solis J., Ocean surface winds drive dynamics of transoceanic aerial movements, PLoS One, 2008, 3(8), 7

  • [17] González-Solís J., Felicísimo A., Fox J.W., Afanasyev V., Kolbeinsson Y., Muñoz J.s., Influence of sea surface winds on shearwater migration detours, Mar. Ecol. Prog. Ser., 2009, 391, 221-230

  • [18] Turchin P., Quantitative analysis of movement. Sinnauer Associates, Sunderland, MA, USA, 1998

  • [19] Fortin M.-J., Dale M.R.T. Spatial analyisis: a guide for ecologists, Cambridge University Press, Cambridge, UK, 2005

  • [20] Egevang C., Stenhouse I.J., Phillips R.A., Petersen A., Fox J.W., Silk J.R.D., Tracking of Arctic Terns Sterna paradisaea reveals longest animal migration, Proc. Natl. Acad. Sci. U. S. A., 2010, 107(5), 2078-2081 [Crossref]

  • [21] Gudmundsson G.A., Alerstam T., Larsson B., Radar observations of northbound migration of the Arctic tern, Sterna paradisaea, at the Antarctic Peninsula, Antarct. Sci., 1992, 4(2), 163-170

  • [22] Møller A.P., Flensted-Jensen E., Mardal W., Dispersal and climate change: a case study of the Arctic tern Sterna paradisaea, Glob. Change Biol., 2006, 12(10), 2005-2013

  • [23] Fijn R.C., Hiemstra D., Phillips R.A., Winden J.v.d., Arctic Terns Sterna paradisaea from the Netherlands migrate record distances across three oceans to Wilkes Land, East Antarctica, Ardea, 2013, 101(1), 3-12 [Crossref]

  • [24] McKnight A., Allyn A.J., Duffy D.C., Irons D.B., ‘Stepping stone’ pattern in Pacific Arctic tern migration reveals the importance of upwelling areas, Mar. Ecol. Prog. Ser., 2013, 491, 253-264

  • [25] Duffy D.C., Mcknight A., Irons D.B., Trans-Andean passage of migrating Arctic Terns over Patagonia, Mar. Ornithol., 2013, 41, 155-159

  • [26] Shaffer S.A., Tremblay Y., Weimerskirch H., Scott D., Thompson D.R., Sagar P.M., et al., Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer, Proc. Natl. Acad. Sci. U. S. A., 2006, 103(34), 12799-12802 [Crossref]

  • [27] Raymond B., Shaffer S.A., Sokolov S., Woehler E.J., Costa D.P., Einoder L., et al., Shearwater foraging in the Southern Ocean: the roles of prey availability and winds, PLoS One, 2010, 5(6), e10960

  • [28] Dias M.P., Granadeiro J.P., Phillips R.A., Alonso H., Catry P., Breaking the routine: individual Cory’s shearwaters shift winter destinations between hemispheres and across ocean basins, Proc. R. Soc. Biol. Sci. Ser. B, 2011, 278(1713), 1786-1793

  • [29] Croxall J.P., Silk J.R.D., Phillips R.A., Afanasyev V., Briggs D.R., Global circumnavigations: tracking year-round ranges of nonbreeding albatrosses, Science, 2005, 307(5707), 249-250

  • [30] Catry P., Dias M.P., Phillips R.A., Granadeiro J.P., Different means to the same end: long-distance migrant seabirds from two colonies differ in behaviour, despite common wintering grounds,PLoS One, 2011, 6(10), e26079

  • [31] Phillips R.A., Silk J.R.D., Croxall J.P., Afanasyev V., Briggs D.R., Accuracy of geolocation estimates for flying seabirds, Mar. Ecol., 2004, 266, 265-272

  • [32] Bridge E.S., Kelly J.F., Contina A., Gabrielson R.M., MacCurdy R.B., Winkler D.W., Advances in tracking small migratory birds: a technical review of light-level geolocation, J. Field Ornithol., 2013, 84(2), 121-137 [Crossref]

  • [33] Lisovski S., Hewson C.M., Klaassen R.H.G., Korner-Nievergelt F., Kristensen M.W., Hahn S., Geolocation by light: accuracy and precision affected by environmental factors, Methods Ecol. Evol., 2012, 3(3), 603-612

  • [34] Atlas R., R.N. Hoffman, S.C. Bloom, J.C. Jusem, Ardizzone J., A multiyear global surface wind velocity data set using SSM/I wind observations, Bull. Am. Met. Soc., 1996, 77, 869-882

  • [35] Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S., Schlax M.G., Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 2007, 20(22), 5473-5496

  • [36] Behrenfeld M.J., Falkowski P.G., Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 1997, 42(1), 1-20 [Crossref]

  • [37] Fisher N.I., Lee A.J., Regression models for an angular response, Biometrics, 1992, 48(3), 665-677 [Crossref]

  • [38] Thorup K., Bisson I.-A., Bowlin M.S., Holland R.A., Wingfield J.C., Ramenofsky M., et al., Evidence for a navigational map stretching across the continental U.S. in a migratory songbird, Proc. Natl. Acad. Sci. U. S. A., 2007, 104(46), 18115-18119 [Crossref]

  • [39] Zuur A.F., Ieno E.N., Smith G.M., Analysing ecological data. Statistics for biology and health, Springer-Verlag, New York, 2007

  • [40] Lewis F., Butler A., Gilbert L., A unified approach to model selection using the likelihood ratio test, Methods Ecol. Evol., 2011, 2(2), 155-162

  • [41] Arnold T.W., Uninformative parameters and model selection using Akaike’s Information Criterion, The Journal of Wildlife Management, 2010, 74(6), 1175-1178

  • [42] Nilsson C., Klaassen R.H.G., Alerstam T., Differences in speed and duration of bird migration between spring and autumn, Am. Nat., 2013, 181(6), 837-845

  • [43] Gastineau G., Le Treut H., Li L., Hadley circulation changes under global warming conditions indicated by coupled climate models, Tellus Ser. A-Dyn. Meterol. Oceanol., 2008, 60(5), 863-884

  • [44] Weimerskirch H., Louzao M., de Grissac S., Delord K., Changes in wind pattern alter albatross distribution and life-history traits, Science, 2012, 335(6065), 211-214

  • [45] Woollings T., Blackburn M., The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns, J. Clim., 2012, 25(3), 886-902

  • [46] Drent R.H., The timing of birds’ breeding seasons: the Perrins hypothesis revisited especially for migrants, Ardea, 2006, 94(3), 305-322

  • [47] Møller A.P., Rubolini D., Lehikoinen E., Populations of migratory bird species that did not show a phenological response to climate change are declining, Proc. Natl. Acad. Sci. U. S. A., 2008, 105(42), 16195-16200 [Crossref]

  • [48] van Etten J., Hijmans R.J., A geospatial modelling approach integrating archaeobotany and genetics to trace the origin and dispersal of domesticated plants, PLoS One, 2010, 5(8), e12060

  • [49] Jonsen I.D., Basson M., Bestley S., Bravington M.V., Patterson T.A., Pedersen M.W., et al., State-space models for bio-loggers: a methodological road map, Deep-Sea Res. Part II-Top. Stud. Oceanogr., 2013, 88-89, 34-46

  • [50] Newton I., Weather-related mass-mortality events in migrants, Ibis, 2007, 149(3), 453-467

  • [51] Peterson A., Soberón J., Pearson R.G., Anderson R.P., Martínez- Meyer E., Nakamura M., et al., Ecological niches and geographic distributions. Monographs in population biology. Princeton University Press, Princeton, NJ, USA, 2011

About the article

Received: 2015-01-19

Accepted: 2015-10-11

Published Online: 2015-11-11

Citation Information: Animal Migration, ISSN (Online) 2084-8838, DOI: https://doi.org/10.1515/ami-2015-0004. Export Citation

© 2015 Christopher Michael Hensz . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in