Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-8838
See all formats and pricing
More options …

Migration patterns of San Francisco Bay Area Hermit Thrushes differ across a fine spatial scale

Allison R. Nelson
  • Corresponding author
  • San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, U.S.A.
  • San Francisco Bay Bird Observatory, 524 Valley Way, Milpitas, CA 95035, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Renée L. Cormier
  • Corresponding author
  • Point Blue Conservation Science, 3820 Cypress Drive #11, Petaluma, CA 94954, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diana L. Humple
  • Corresponding author
  • Point Blue Conservation Science, 3820 Cypress Drive #11, Petaluma, CA 94954, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josh C. Scullen
  • Corresponding author
  • San Francisco Bay Bird Observatory, 524 Valley Way, Milpitas, CA 95035, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ravinder Sehgal
  • Corresponding author
  • San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nathaniel E. Seavy
  • Corresponding author
  • Point Blue Conservation Science, 3820 Cypress Drive #11, Petaluma, CA 94954, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-04 | DOI: https://doi.org/10.1515/ami-2016-0001

Abstract

Effective conservation of short-distance migrants requires an understanding of intraspecific variation in migratory patterns across small spatial scales. Until the advent of ultra-light geolocation devices, our knowledge of the migratory connectivity of songbirds was limited. For the Hermit Thrush (Catharus guttatus), subspecies delineations and connectivity patterns have been unclear in the portion of their breeding range in western North America from southeastern Alaska to northwestern Washington, where individuals wintering in the San Francisco Bay Area of California purportedly breed. To determine breeding locations and migratory timing of the Bay Area’s wintering Hermit Thrushes, we deployed geolocators at sites to the north and south of the San Francisco Bay. We compared results from these two regions to one another and to connectivity patterns suggested by subspecies definitions. We collected morphometrics to identify regional differences. Hermit Thrushes that wintered in the North Bay had a wider and more southerly breeding distribution from the British Columbia coast to northwestern Washington, whereas South Bay thrushes migrated to southeastern Alaska and the British Columbia coast. In general, North Bay thrushes departed wintering grounds and arrived on breeding grounds earlier than South Bay thrushes, but we cannot eliminate sex as a factor in these differences. Regional morphology differed only in bill length. Intraspecific isolation in glacial refugia during the Late Pleistocene may explain these fine-scale geographic variations in migration patterns and morphology.

This article offers supplementary material which is provided at the end of the article.

Keywords : migratory connectivity; geolocator; Catharus guttatus; migration timing; morphology; subspecies; Pleistocene; Pacific Northwest

References

  • [1] Webster M.S., Marra P.P., Haig S.M., Bensch S., Holmes R.T., Links between worlds: unraveling migratory connectivity, Trends Ecol. Evol., 2002, 17, 76–83 CrossrefGoogle Scholar

  • [2] Boulet M., Norris D.R., Introduction: the past and present of migratory connectivity, Ornithol. Monogr., 2006, 61, 1–13 Google Scholar

  • [3] Webster M.S., Marra P.P., in:, Greenberg R, Marra P.P. (Eds.), Birds of Two Worlds: The Ecology and Evolution of Migration, Johns Hopkins University Press, Baltimore, 2005 Google Scholar

  • [4] Calvert A.M., Walde S.J., Taylor P.D., Nonbreeding-season drivers of population dynamics in seasonal migrants: conservation parallels across taxa, Avian Conserv. Ecol., 2009, http://www.ace-eco.org/vol4/iss2/art5/ Google Scholar

  • [5] Ruegg K.C., Smith T.B., Not as the crow flies: a historical explanation for circuitous migration in Swainson’s Thrush (Catharus ustulatus), Proc. R. Soc. Lond. B Biol. Sci., 2002, 269, 1375–1381 Google Scholar

  • [6] Voelker G., Bowie R.C.K., Klicka J., Gene trees, species trees and Earth history combine to shed light on the evolution of migration in a model avian system, Mol. Ecol., 2013, 22, 3333–3344 CrossrefGoogle Scholar

  • [7] Alvarado A.H., Fuller T.L., Smith T.B., Integrative tracking methods elucidate the evolutionary dynamics of a migratory divide, Ecol. Evol., 2014, 4, 3456–3469 Google Scholar

  • [8] Faaborg J., Holmes R.T., Anders A.D., Bildstein K.L., Dugger K. M., Gauthreux, Jr. S. S., et al., Conserving migratory land birds in the New World: do we know enough?, Ecol. Appl., 2010, 20, 398–418 CrossrefGoogle Scholar

  • [9] Bearhop S., Fiedler W., Furness R.W., Votier S.C., Waldron S., Newton J., et al., Assortative mating as a mechanism for rapid evolution of a migratory divide, Science, 2005, 310, 502–504 Google Scholar

  • [10] Berthold P., Helbig A.J., Mohr G., Querner U., Rapid microevolution of migratory behaviour in a wild bird species, Nature, 1992, 360, 668–670 Google Scholar

  • [11] Jones J., Norris D.R., Girvan M.K., Barg J.J., Kyser T.K., Robertson R.R., Migratory connectivity and rate of population decline in a vulnerable songbird, Condor, 2008, 110, 538–544 CrossrefGoogle Scholar

  • [12] Phillips A.R., The Known Birds of North and Middle America: Part II, Allan R. Phillips, Denver, 1991 Google Scholar

  • [13] Pyle P., Identification Guide to North American Birds: Part 1, Slate Creek Press, Bolinas, 1997 Google Scholar

  • [14] Dellinger R., Wood P.B., Jones P.W., Donovan T.M., Hermit Thrush (Catharus guttatus), Birds North Am. Online, 2012, http://bna.birds.cornell.edu/bna/species/261 Google Scholar

  • [15] Aldrich J.W., Population characteristics and nomenclature of the Hermit Thrush, Proc. United States Natl. Museum, Smithson. Inst., 1968, 124, 1–33 CrossrefGoogle Scholar

  • [16] Dickerman R.W., Parkes K.C., in:, The Era of Allan R. Phillips: A Festschrift, Horizon Communications Publishers, Albequerque, 1997 Google Scholar

  • [17] Osgood W.H., New subspecies of North American birds, Auk, 1901, 18, 179–185 CrossrefGoogle Scholar

  • [18] Warner B.G., Mathewes R.W., Clague J.J., Ice-free conditions on the Queen Charlotte Islands, British Columbia, at the height of late Wisconsin glaciation, Science, 1982, 218, 675–677 Google Scholar

  • [19] Greenberg R., Danner R., Olsen B., Luther D., High summer temperature explains bill size variation in salt marsh sparrows, Ecography (Cop.)., 2012, 35, 146–152 CrossrefGoogle Scholar

  • [20] Phillips A., Marshall J., Monson G., The Birds of Arizona, The University of Arizona Press, Tucson, 1964 Google Scholar

  • [21] Storer R.W., Subspecies and the study of geographic variation, Auk, 1982, 99, 599–601 Google Scholar

  • [22] Berthold P., Bird Migration: A General Survey, 2nd ed., Oxford University Press, Oxford, 1993 Google Scholar

  • [23] McCabe T.T., McCabe E.B., Preliminary studies of western Hermit Thrushes, Condor, 1932, 34, 26–40 CrossrefGoogle Scholar

  • [24] McCabe T.T., McCabe E.B., From field and study: Hermit Thrushes of northwestern states, Condor, 1933, 35, 122–123 Google Scholar

  • [25] Clement P., Thrushes, Princeton University Press, Princeton, 2000 Google Scholar

  • [26] Stutchbury B.J.M., Tarof S.A., Done T., Gow E., Kramer P.M., Tautin J, et al., Tracking long-distance songbird migration by using geolocators, Science, 2009, 323, 896 Google Scholar

  • [27] Bairlein F., Norris D.R., Nagel R., Bulte M., Voigt C.C., Fox J.W., et al., Cross-hemisphere migration of a 25g songbird, Biol. Lett., 2012, 8, 505–507 CrossrefGoogle Scholar

  • [28] Stach R., Jakobsson S., Kullberg C., Fransson T., Geolocators reveal three consecutive wintering areas in the thrush nightingale, Anim. Migr., 2013, 1, 1–7 Google Scholar

  • [29] Rundel C.W., Wunder M.B., Alvarado A.H., Ruegg K.C., Harrigan R., Schuh A., et al., Novel statistical methods for integrating genetic and stable isotope data to infer individual-level migratory connectivity, Mol. Ecol., 2013, 22, 4163–4176 CrossrefGoogle Scholar

  • [30] Hobson K.A., Van Wilgenburg S.L., Faaborg J., Toms J.D., Rengifo C., Sosa A. L., et al., Connecting breeding and wintering grounds of Neotropical migrant songbirds using stable hydrogen isotopes: a call for an isotopic atlas of migratory connectivity, J. Field Ornithol., 2014, 85, 237–257 CrossrefGoogle Scholar

  • [31] Porzig E.L., Seavy N.E., Gardali T., Geupel G.R., Holyoak M., Eadie J. M., Habitat suitability through time: using time series and habitat models to understand changes in bird density, Ecosphere, 2014, 5, 1–16 Google Scholar

  • [32] Samuels I.A., Gardali T., Humple D.L., Geupel G.R., Winter site fidelity and body condition of three riparian songbird species following a fire, West. N. Am. Nat., 2005, 65, 45–52 Google Scholar

  • [33] Jaramillo A., Hudson S.E., Strong C.M., Coyote Creek Field Station Ten-Year Report, 1987-1996, San Francisco Bay Bird Observatory, Milpitas, 2003 Google Scholar

  • [34] Ralph C.J., Geupel G.R., Pyle P., Martin T.E., Desante D.F., Handbook of Field Methods for Monitoring Landbirds, USDA Forest Service, Berkeley, 1993 Google Scholar

  • [35] Lockwood R., Swaddle J.P., Rayner J.M.V, Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration, J. Avian Biol., 1998, 29, 273–292 CrossrefGoogle Scholar

  • [36] Owen J.C., Collecting, processing, and storing avian blood: a review, J. Field Ornithol., 2011, 82, 339–354 CrossrefGoogle Scholar

  • [37] Griffiths R., Double M.C., Orr K., Dawson R.J.G., A DNA test to sex most birds, Mol. Ecol., 1998, 7, 1071–1075 CrossrefGoogle Scholar

  • [38] Lisovski S., Hahn S., GeoLight - processing and analysing light-based geolocator data in R, Methods Ecol. Evol., 2012, 3, 1055–1059 Google Scholar

  • [39] Hill R.D., Braun M.J., In:, Sibert JR, Nielsen JL (Eds.), Electronic Tagging and Tracking in Marine Fisheries: Proceedings of the Symposium on Tagging and Tracking Marine Fish with Electronic Devices (7 - 11 Febr. 2000, Honolulu, Hawaii), University of Hawaii, Springer Netherlands, 2001, 315–330 Google Scholar

  • [40] Worton B.J., Kernel methods for estimating the utilization distribution in home-range studies, Ecology, 1989, 70, 164–168 CrossrefGoogle Scholar

  • [41] Fudickar A.M., Wikelski M., Partecke J., Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats, Methods Ecol. Evol., 2012, 3, 47–52 Google Scholar

  • [42] Ambrosini R., Møller A.P., Saino N., A quantitative measure of migratory connectivity, J. Theor. Biol., 2009, 257, 203–211 Google Scholar

  • [43] Rodríguez-Ruiz J., de la Puente J., Parejo D., Valera F., Calero-Torralbo M.A., Reyes-González J.M., et al., Disentangling migratory routes and wintering grounds of Iberian near-threatened European Rollers Coracias garrulus, PLoS One, 2014, http://journals.plos.org/plosone/article?id=10.1371/ journal.pone.0115615 Google Scholar

  • [44] Bell C.P., Leap-frog migration in the Fox Sparrow: minimizing the cost of spring migration, Condor, 1997, 99, 470–477 CrossrefGoogle Scholar

  • [45] Kelly J.F., Ruegg K.C., Smith T.B., Combining isotopic and genetic markers to identify breeding origins of migrant birds, Ecol. Appl., 2005, 15, 1487–1494 CrossrefGoogle Scholar

  • [46] Hallworth M.T., Marra P.P., Miniaturized GPS tags identify non-breeding territories of a small breeding migratory songbird, Sci. Rep., 2015, 5 Google Scholar

  • [47] Baldwin M.W., Winkler H., Organ C.L., Helm B., Wing pointedness associated with migratory distance in commongarden and comparative studies of stonechats (Saxicola torquata), J. Evol. Biol., 2010, 23, 1050-1056 Google Scholar

  • [48] Yong W., Moore F.R.., Flight, morphology, energetic condition, and the stopover biology of migrating thrushes, Auk, 1994, 111, 683–692 Google Scholar

  • [49] Ketterson E.D., Nolan Jr. V., Geographic variation and its climatic correlates in the sex ratio of eastern-wintering Dark-eyed Juncos (Junco hyemalis hyemalis), Ecology, 1976, 57, 679–693 CrossrefGoogle Scholar

  • [50] Cristol D.A., Baker M.B., Carbone C., In: Nolan, Jr. V., Ketterson E.D., Thompson C. (Eds.), Current Ornithology, Kluwer Academic/Plenum Publishers, New York, 1999, 33-88 Google Scholar

  • [51] Stouffer P.C., Dwyer G.M., Sex-biased winter distribution and timing of migration of Hermit Thrushes (Catharus guttatus) in eastern North America, Auk, 2003, 120, 836–847 CrossrefGoogle Scholar

  • [52] Bowlin M.S., Sex, wingtip shape, and wing-loading predict arrival date at a stopover site in the Swainson’s Thrush (Catharus ustulatus), Auk, 2007, 124, 1388–1396 CrossrefGoogle Scholar

  • [53] Delmore K.E., Fox J.W., Irwin, D.E., Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators, Proc. Biol. Sci., 2012, 279, 4582–4589 Google Scholar

  • [54] Delmore K.E., Irwin D.E., Hybrid songbirds employ intermediate routes in a migratory divide, Ecol. Lett., 2014, 17, 1211–1218 CrossrefGoogle Scholar

  • [55] Cormier R.L., Humple D.L., Gardali T., Seavy N.E., Light-level geolocators reveal strong migratory connectivity and withinwinter movements for a coastal California Swainson’s Thrush (Catharus ustulatus) population, Auk, 2013, 130, 283–290 Google Scholar

  • [56] Ruegg K.C., Hijmans R.J., Moritz C., Climate change and the origin of migratory pathways in the Swainson’s thrush, Catharus ustulatus, J. Biogeogr., 2006, 33, 1172–1182 CrossrefGoogle Scholar

  • [57] Carrara P.E., Ager T.A., Baichtal J.F., Possible refugia in the Alexander Archipelago of southeastern Alaska during the late Wisconsin glaciation, Can. J. Earth Sci., 2007, 44, 229–244 CrossrefGoogle Scholar

  • [58] Shafer A.B.A., Cullingham C.I., Côté S.D., Coltman D.W., Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol. Ecol., 2010, 19, 4589–4621 CrossrefGoogle Scholar

  • [59] Swarth H.S., Origins of the fauna of the Sitkan District, Alaska, Proc. Calif. Acad. Sci., 1936, 23, 66–71 Google Scholar

  • [60] Cook J.A., Dawson N.G., MacDonald S.O., Conservation of highly fragmented systems: the north temperate Alexander Archipelago, Biol. Conserv., 2006, 133, 1–15 Google Scholar

  • [61] Topp C.M., Winker K., Genetic patterns of differentiation among five landbird species from the Queen Charlotte Islands, British Columbia, Auk, 2008, 125, 461–472 CrossrefGoogle Scholar

  • [62] Atwater B.F., Hedel C.W., Helley E.J., Late Quaternary depositional history, Holocene sea-level changes, and vertical crustal movement, southern San Francisco Bay, California, U.S.G.S. Professional Paper, 1977, 1014, 1–15 Google Scholar

  • [63] Sillett T.S., Holmes R.T., Variation in survivorship of a migratory songbird throughout its annual cycle, J. Anim. Ecol., 2002, 71, 296–308 CrossrefGoogle Scholar

  • [64] Weir J.T., Schluter D., Ice sheets promote speciation in boreal birds, Proc. Biol. Sci., 2004, 271, 1881–1887 Google Scholar

  • [65] Outlaw D.C., Voelker G., Mila B., Girman D.J., Evolution of long-distance migration in and historical biogeography of Catharus thrushes: a molecular phylogenetic approach, Auk, 2003, 120, 299–310 CrossrefGoogle Scholar

  • [66] Winker K., Pruett C.L., Seasonal migration, speciation, and morphological convergence in the genus Catharus (Turdidae), Auk, 2006, 123, 1052-1068 Google Scholar

  • [67] Delmore K.E., Kenyon H.L., Germain R.R., Irwin D.E., Phenotypic divergence during speciation is inversely associated with differences in seasonal migration, Proc. R. Soc. B. Biol. Sci., 2015, 282, 20151921 Google Scholar

  • [68] Ruegg K., Anderson E.C., Boone J., Pouls J., Smith T.B., A role for migration-linked genes and genomic islands in divergence of a songbird, Mol. Ecol., 2014, 23, 4757–4769 CrossrefGoogle Scholar

  • [69] Delmore K.E., Hübner S., Kane N.C., Schuster R., Andrew R.L., Câmara F., et al., Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation, Mol. Ecol., 2015, 24, 1873–1888 CrossrefGoogle Scholar

  • [70] Topp C.M., Pruett C.L., McCracken K.G., Winker K., How migratory thrushes conquered northern North America: a comparative phylogeography approach, PeerJ, 2013, https:// dx.doi.org/10.7717/peerj.206 CrossrefGoogle Scholar

  • [71] Norris R.D., Marra P.P., Seasonal interactions, habitat quality, and population dynamics in migratory birds, Condor, 2007, 109, 535–547 CrossrefGoogle Scholar

  • [72] Sauer J.R., Hines J.E., Fallon J.E., Pardieck K.L., Ziolkowski, Jr. D. J., Link W.A., The North American Breeding Bird Survey, Results and Analysis 1966 - 2013, Version 01.30.2015, USGS Patuxent Wildl. Res. Cent., 2015 Google Scholar

About the article

Received: 2015-09-09

Accepted: 2016-01-19

Published Online: 2016-02-04


Citation Information: Animal Migration, ISSN (Online) 2084-8838, DOI: https://doi.org/10.1515/ami-2016-0001.

Export Citation

© 2016 Allison R. Nelson et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in