Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-8838
See all formats and pricing
More options …

Factors related to common bottlenose dolphin (Tursiops truncatus) seasonal migration along South Carolina and Georgia coasts, USA

Anna R Taylor / John H Schacke / Todd R Speakman / Steven B Castleberry / Richard B Chandler
Published Online: 2016-04-18 | DOI: https://doi.org/10.1515/ami-2016-0002

Abstract

Little is known about common bottlenose dolphin (Tursiops truncatus) seasonal migration along the United States southeastern Atlantic coast, or what factors influence migratory patterns. Therefore, our objectives were to: 1) document evidence for seasonal movement of dolphins in this region (that would indicate migratory behavior) and 2) determine if seasonal changes in abundance and temporary emigration (i.e., migration indicators) for dolphins along South Carolina and Georgia coasts are related to changes in water quality variables. Previously collected capturerecapture data (from visual sightings of individual dolphins) and water quality data from Charleston, South Carolina and St. Catherine’s Island, Georgia were used to achieve our objective. Robust design models were used to estimate seasonal abundance and temporary emigration for the Charleston population, whereas closed population capture-recapture models were used to estimate seasonal abundances for the St. Catherine’s Island population. The Charleston population showed seasonal abundance and temporary emigration patterns with low estimates in winter, which increased in spring, peaked in summer, and decreased in fall. Seasonal temporary emigration was best explained by water temperature, which followed the same general pattern. Seasonal abundance in the St. Catherine’s population was best explained by salinity, but no consistent pattern in abundance was observed. Our results not only provide the first evidence of a clear seasonal migration of dolphins in this region, but can aid in conservation and management efforts by increasing accuracy of abundance estimates.

Keywords : Common bottlenose dolphin; migration; temporary emigration; seasonal abundance; Robust design; closed capture; capture-mark-recapture; photoidentification

References

  • [1] Read A.J., Urian K.W., Wilson B., Waples D.M., Abundance of bottlenose dolphins in the bays, sounds, and estuaries of North Carolina, Mar. Mam. Sci., 2003, 19, 59-73 Google Scholar

  • [2] Waring G.T., Josephson E., Maze-Foley K., Rosel P.E. (Eds.), U.S. Atlantic and Gulf of Mexico marine mammal stock assessments -- 2009, NOAA Tech. Memo. NMFS NE 213, 2009, 137-181 Google Scholar

  • [3] Speakman T.R., Lane S.M., Schwacke L.H., Fair P.A., Zolman E.S., Mark-recapture estimates of seasonal abundance and survivorship for bottlenose dolphins (Tursiops truncatus) near Charleston, South Carolina, USA, J. Cetacean Res. Manage., 2010, 11, 153-162 Google Scholar

  • [4] Hoelzel A.R, Genetics and ecology of whales and dolphins, Annu. Rev. Ecol. Syst., 1994, 25, 377-399 CrossrefGoogle Scholar

  • [5] Bills M.L., Keith E.O., Historical abundance and spatial distribution of the Atlantic bottlenose dolphin (Tursiops truncatus) along the southeast coast of the United States, Aquatic Mammals, 2012, 38, 290-300 Google Scholar

  • [6] Conn P.B., Gorgone A.M., Jugovich A.R., Byrd B.L., Hansen L.J., Accounting for transients when estimating abundance of bottlenose dolphins in Choctawhatchee Bay, Florida, J. Wildl. Manage., 2011, 75, 569-579 Web of ScienceGoogle Scholar

  • [7] Fertl D., Occurrence patterns and behavior of bottlenose dolphins (Tursiops truncatus) in the Galveston ship channel, Texas, Tex. J. Sci., 1994, 46, 299-317 Google Scholar

  • [8] Shane S.H., Occurrence, movements, and distribution of bottlenose dolphin, Tursiops truncatus, in southern Texas, Fish. Bull., 1980, 78, 593-601 Google Scholar

  • [9] Maze K.S., Würsig B., Bottlenose dolphins of San Luis Pass, Texas: occurrence, site-fidelity, and habitat use, Aquatic Mammals, 1999, 25, 91-103 Google Scholar

  • [10] Young R.F., Phillips H.D., Primary production required to support bottlenose dolphins in a salt marsh estuarine creek system, Mar. Mam. Sci., 2002, 18, 358-373 Google Scholar

  • [11] Torres L.G., McLellan W.A., Meagher E., Pabst D.A., Seasonal distribution and relative abundance of bottlenose dolphins, Tursiops truncatus, along the US mid-Atlantic coast, J. Cetacean Res. Manage., 2005, 7, 153-161 Google Scholar

  • [12] McFee W.E., Hopkins-Murphy S.R., Schwacke L.H., Trends in bottlenose dolphin (Tursiops truncatus) strandings in South Carolina, USA, 1997-2003: implications for the Southern North Carolina and South Carolina management units, J. Cetacean Res. Manage., 2006, 8, 195-201 Google Scholar

  • [13] Schwacke L.H., Voit E.O., Hansen L.J., Wells R.S., Mitchum G.B., Hohn A.A., et al., Probabilistic risk assessment of reproductive effects of polychlorinated biphenyls on bottlenose dolphins (Tursiops truncatus) from the southeast United States coast, Environ. Toxicol. Chem., 2002, 21, 2752-2764 CrossrefGoogle Scholar

  • [14] Hansen L.J., Schwacke L.H., Mitchum GB., Hohn A.A., Wells R.S., Zolman E.S., et al., Geographic variation in polychorinated biphenyl and organochlorine pesticide concentrations in the blubber of bottlenose dolphins from the US Atlantic coast, Sci. Total Environ., 2004, 319, 147-172 Google Scholar

  • [15] Balmer B.C., Schwacke L.H., Wells R.S., George R.C., Hoguet J., Kucklick J.R., et al., Relationship between persistent organic pollutants (POPs) and ranging patters in common bottlenose dolphins (Tursiops truncatus) from coastal Georgia, USA, Sci. Total Environ., 2011, 409, 2094-2101 Google Scholar

  • [16] Waring G.T., Josephson E., Maze-Foley K., Rosel P.E., U.S. Atlantic and Gulf of Mexico marine mammal stock assessments -- 2013, NOAA Tech. Memo. NMFS NE 228, 2014, 193-315 Google Scholar

  • [17] Würsig B., Jefferson T.A., Methods of photo-identification for small cetaceans, Rep. Int. Whal. Commm. Special Issue 12, 1990, 43-52 Google Scholar

  • [18] Caswell H., Fujiwara M., Brault S., Declining survival probability threatens the North Atlantic right whale, Proc. Natl. Acad. Sci. USA, 1999, 96, 3308-3313 Google Scholar

  • [19] Beck C.A., Reid J.P., An automated photo-identification catalog for studies of the life history of the Florida manatee, In: O’Shea T.J., Ackerman B.B., Percival H.F. (Eds.), Population biology of the Florida manatee, Information and Technology Report 1, U.S. Department of the Interior, National Biological Service, 1995 Google Scholar

  • [20] Würsig B., Würsig M., Photographic determination of group size, composition, and stability of coastal porpoises (Tursiops truncatus), Science, 1977, 198, 755-756 Google Scholar

  • [21] Adams J.D., Speakman T., Zolman E., Schwacke L.H., Automating image matching, cataloging, and analysis for photo-identification research, Aquatic Mammals, 2006, 32, 374-384 Google Scholar

  • [22] Zolman E.S., Residence patterns of bottlenose dolphins (Tursiops truncatus) in the Stono River estuary, Charleston County, South Carolina, U.S.A., Mar. Mam. Sci., 2002, 18, 879-892 Google Scholar

  • [23] Kendall W., Chapter 15: The ‘robust design’, In: Cooch E.G., White G.C. (Eds.), Program Mark: a gentle introduction, 13th ed., 2014 http://www.phidot.org/software/mark/docs/book/ pdf/chap15.pdf Google Scholar

  • [24] National Estuarine Research Reserve System (NERRS), System-wide Monitoring Program, NOAA NERRS Centralized Data Management Office, 2014, http://cdmo.baruch.sc.edu/ Google Scholar

  • [25] Pollock, K.H., A capture-recapture design robust to unequal probability of capture, J. Wildl. Manage., 1982, 46, 752-757 Google Scholar

  • [26] Laake J.L., RMark: an R interface for analysis of capturerecapture data with MARK, AFSC Processed Rep. 2013-01, 25p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115, 2013 Google Scholar

  • [27] Cooch E., White G.C., Program MARK: a gentle introduction, 13th ed., 2014 http://www.phidot.org/software/mark/docs/ book/ Google Scholar

  • [28] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2013, http://www.R-project.org/ Google Scholar

  • [29] Kendall W.L., Nichols J.D., Hines J.E., Estimating temporary emigration using capture-recapture data with Polluck’s Robust Design, Ecology, 1997, 78, 563-578 Google Scholar

  • [30] Burnham K.P., Anderson D.R., Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed., Springer, 2002 Google Scholar

  • [31] Venables W.N., Ripley B.D., Modern applied statistics with S, 4th ed., Springer, 2002 Google Scholar

  • [32] Lukacs P., Chapter 14: Closed population capture-recapture models, In: Cooch E.G., White G.C. (Eds.), Program Mark: a gentle introduction, 14th ed., 2015, http://www.phidot.org/ software/mark/docs/book/pdf/chap14.pdf Google Scholar

  • [33] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2014, http://www.R-project.org/ Google Scholar

  • [34] Dormann C.F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., et al., Collinearity: a review of methods to deal with it and a simulation study evaluating their performance, Ecography, 2013, 36, 27-46 Google Scholar

  • [35] Hem J.D., Study and interpretation of the chemical characteristics of natural water, Vol. 2254, Department of the Interior, US Geological Survey, 1985 Google Scholar

  • [36] Weigle B., Abundance, distribution and movements of bottlenose dolphins (Tursiops truncatus) in Lower Tampa Bay, Florida, In: Hammond P.S., Mizroch S.A., Donovan G.P. (Eds.), Individual recognition of cetaceans: use of photo-identification and other techniques to estimate population parameters, Rep. Int. Whal. Commm. Special Issue 12, 1990 Google Scholar

  • [37] Balmer B.C., Wells R.S., Nowacek S.M., Schwacke L.H., McLellan W.A., Scharf F.S., et al., Seasonal abundance and distribution patterns of common bottlenose dolphins (Tursiops truncatus) near St. Joseph Bay, Florida, USA, J. Cetacean Res. Manage., 2008, 10, 157-167 Google Scholar

  • [38] Speakman T., Zolman E., Adams J., Defran R.H., Laska D., Schwacke L., et al., Temporal and spatial aspects of bottlenose dolphin occurrence in coastal and estuarine waters near Charleston, South Carolina, NOAA Tech. Memo. NOS NCCOS 37, 2006, 1-249 Google Scholar

  • [39] Smith H.C., Pollock K., Waples K., Bradley S., Bejder L., Use of the Robust Design to estimate seasonal abundance and demographic parameters of a coastal bottlenose dolphin (Tursiops aduncus) population, PloS one, 2013, 8, e76574 Google Scholar

  • [40] Kenney R.D, Bottlenose dolphins off the northeastern United States, In: S. Leatherwood S., Reeves R.R. (Eds.), The bottlenose dolphin, Academic Press, San Diego, 1990 Google Scholar

  • [41] Mead J.G., Potter C.W., Recognizing two populations of the bottlenose dolphin (Tursiops truncatus) off the Atlantic coast of North America: morphologic and ecologic considerations, IBI Reports, 1995, 5, 31-44 Google Scholar

  • [42] Bräger S., Würsig B., Acevedo A., Henningsen T., Association patterns of bottlenose dolphins (Tursiops truncatus) in Galveston Bay, Texas, J. Mammal., 1994, 75, 431-437 Google Scholar

  • [43] Barco S.G., Swingle W.M., McLellan W.A., Harris R.N., Pabst D.A., Local abundance and distribution of bottlenose dolphins (Tursiops truncatus) in the nearshore waters of Virginia Beach, Virginia, Mar. Mam. Sci., 1999, 15, 394-408 Google Scholar

  • [44] Rogers S., Van Den Avyle M., Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic), Atlantic Menhaden (No. FWS/OBS-82/11.11), Georgia University, Athens, USA, 1983 Google Scholar

  • [45] Helm B., Schwabl I., Gwinner E., Circannual basis of geographically distinct bird schedules, J. Exp. Biol., 2009, 212, 1259-1269 Web of ScienceGoogle Scholar

  • [46] Price E.R., McFarlan J.T., Guglielmo C.G., Preparing for migration? The effects of photoperiod and exercise muscle oxidative enzymes, lipid transporters, and phospholipids in white-crowned sparrows, Physiol. Biochem. Zool., 2010, 83, 252-262 CrossrefGoogle Scholar

  • [47] Capossela K.M., Fabrizio M.C., Brill R.W., Migratory and withinestuary behaviors of adult summer flounder (Paralichthys dentatus) in a lagoon system of the southern mid-Atlantic Bight, Fish. Bull., 2013, 111, 189-201 Google Scholar

  • [48] Zydlewski G.B., Stitch D.S., McCormick S.D., Photoperiod control of downstream movements of Atlantic salmon Salmo salar smolts, J. Fish Biol., 2014, 85, 1023-1041 Web of ScienceGoogle Scholar

  • [49] Baggerman B., Factors in the diadromous migrations of fish, In: Zoological Society Symposium, London, 1960, 1, 33-60 Google Scholar

  • [50] McCormick S.D., Hansen L.P., Quinn T.P., Saunders R.L., Movement migration, and smolting of Atlantic salmon (Salmo salar), Can. J. Fish. Aquat. Sci., 1998, 55, 77-92 Google Scholar

About the article

Received: 2015-09-18

Accepted: 2015-03-21

Published Online: 2016-04-18


Citation Information: Animal Migration, ISSN (Online) 2084-8838, DOI: https://doi.org/10.1515/ami-2016-0002.

Export Citation

© 2016 Anna R Taylor, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in