Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-8838
See all formats and pricing
More options …

Variation in Forewing Size Linked to Migratory Status in Monarch Butterflies

Yiwen Li / Amanda A Pierce
  • Corresponding author
  • Emory University, Department of Biology
  • University of North Carolina at Chapel Hill, Department of Biology
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacobus C. de Roode
Published Online: 2016-06-23 | DOI: https://doi.org/10.1515/ami-2016-0003

Abstract

Long-distance migration can be seen throughout the animal kingdom and can have large impacts on population dynamics and species distributions. The act of migration itself also affects the evolution of a species, as evolutionary forces select for certain characteristics in animals conducting long-distance migration. Monarch butterflies are best known for their annual migration from Canada and the northern United States to central Mexico, but some populations of monarchs have lost the ability to migrate. Previous research found that migratory monarchs had larger, more elongated wings than their non-migratory counterparts and it was hypothesized that these traits were beneficial for migration. However, Bergmann’s rule - which predicts larger body sizes with increasing latitude - could also explain this pattern as migratory populations are found at higher latitudes. To understand the role of wing dimensions in migration, we examined forewing size and shape of migratory and non-migratory monarchs from seven worldwide populations varying in latitude. Results showed that larger forewing size was indeed correlated with migratory status rather than latitude. However, migratory monarchs did not have more elongated forewing shape than non-migratory monarchs across the globe. Our study indicates that size may play a larger role than shape in long-distance migratory capability.

Keywords : long-distance migration; Danaus plexippus; wing morphology; Bergmann’s rule

References

  • [1] McKinnon L., Smith P.A., Nol E., Martin J.L., Doyle F.I., Abraham K.F., et al., Lower Predation Risk for Migratory Birds at High Latitudes. Science, 2010, 327, 326-7 Web of ScienceGoogle Scholar

  • [2] Altizer S., Bartel R., and Han B.A., Animal migration and infectious disease risk, Science, 2011, 331, 296-302 Web of ScienceGoogle Scholar

  • [3] Dingle H., Migration strategies of insects, Science, 1972, 175, 1327-1355 Google Scholar

  • [4] Alerstam T., Conflicting evidence about long-distance animal navigation, Science, 2006, 313, 791-4 Google Scholar

  • [5] Alerstam T., Hedenstrom A., and Akesson S., Long-distance migration: evolution and determinants, Oikos, 2003, 103, 247-60 Google Scholar

  • [6] Dingle H., Migration: The Biology of Life on the Move, Oxford University Press, Oxford, 1996 Google Scholar

  • [7] Skov C., Chapman B.B., Boktoft H., Brodersen J., Bronmark C., Hansson L.A., et al., Migration confers survival benefits against avian predators for partially migratory freshwater fish, Biol. Lett., 2013, 9, 20121178 Web of ScienceCrossrefGoogle Scholar

  • [8] Liedvogel M., Akesson S., and Bensch S., The genetics of migration on the move, Trends Ecol. Evol., 2011, 26, 561-569 Google Scholar

  • [9] Slatkin M., Gene flow and the geographic structure of natural populations, Science, 1987, 236, 787-792 Google Scholar

  • [10] Johst K., and Brandl R., The effect of dispersal on local population dynamics, Ecol. Modell., 1997,104, 87-101 CrossrefGoogle Scholar

  • [11] Birand, A., Vose A., and Gavrilets S., Patterns of species ranges, speciation, and extinction, Am. Nat., 2012, 179, 1-21 Web of ScienceGoogle Scholar

  • [12] Alonso-Mejia A., Rendon Salinas E., Montesinos-Patino E., and Brower L. P., Use of lipid reserves by monarch butterflies overwintering in Mexico: Implications for conservation, Ecol. Appl., 1997,7,934-947 CrossrefGoogle Scholar

  • [13] Brower L. P., Fink L. S., and Walford P., Fueling the fall migration of the Monarch butterfly, Integr. and Comp. Biol., 2006, 46, 1123-1142 Google Scholar

  • [14] Suarez-Tovar C.M., and Sarmiento C.E., Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species, J. Evol. Bio., 2016, 29, 690-703 Web of ScienceGoogle Scholar

  • [15] Urquhart F.A., and Urquhart N.R., Autumnal migration routes of the eastern population of the monarch butterfly (Danaus p. plexippus L.; Danaidae; Lepidoptera) in North America to the overwintering site in the Neovolcanic Plateau of Mexico, Can. J. of Zool. 1978, 56, 1759-64 Google Scholar

  • [16] Tuskes P. M., and Brower L. P., Overwintering ecology of monarch butterfly, Danaus plexippus, in California, Ecol. Entomol., 1978, 3, 141-153 CrossrefGoogle Scholar

  • [17] Miller N. G., Wassenaar L. I., Hobson K. A., and Norris D. R., Migratory Connectivity of the Monarch Butterfly (Danaus plexippus): Patterns of Spring Re-Colonization in Eastern North America, PLoS ONE, 2012, http://dx.doi.org/10.1371/journal. pone.0031891 CrossrefGoogle Scholar

  • [18] Pierce A. A., Zalucki M. P., Bangura M., Udawatta M., Kronforst M. R., Altizer S., et al., Serial founder effects and genetic differentiation during worldwide range expansion of Web of ScienceGoogle Scholar

  • [monarch butterflies, Proc. R. Soc. B, Biol, 2014, 281 Google Scholar

  • [19] Zhan S., Zhang W., Niitepold K., Hsu J., Haeger J. F., Zalucki M. P., et al., The genetics of monarch butterfly migration and warning colouration, Nature, 2014, 514, 317-321 Web of ScienceGoogle Scholar

  • [20] Pierce A., Altizer S., Chamberlain N., Kronforst M., and de Roode J., Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly, Cornell University Press, New York, 2015 Google Scholar

  • [21] Hahn S., Korner-Nievergelt F., Emmenegger T., Amrhein V., Csoergo T., Gursoy A., et al, Longer wings for faster springs - wing length relates to spring phenology in a long-distance migrant across its range, Ecol & Evol, 2016, 6, 68-77 Google Scholar

  • [22] Hassall C., Keat S., Thompson D.J., and Watts P.C., Bergmann’s rule is maintained during a rapid range expansion in a damselfly, Glob. Change Biol., 2014,20, 475-82 CrossrefWeb of ScienceGoogle Scholar

  • [23] Bergmann C., Ueber die Verhaeltnisse der Waermeoekonomie der Thiere zu ihrer Google Scholar

  • [Groesse, Goettinger Studien, 1847, 1, 595-708, (in German) Google Scholar

  • [24] Ray C. , The application of Bergmann’s and Allen’s rules to the poikilotherms. J. Morphol., 1960, 106, 85-108 Google Scholar

  • [25] Lonsdale D.J., and Levinton J.S., Latitudinal differentiation in copepod growth- an adaptation to temperature, Ecol., 1985, 66, 1397-407 Google Scholar

  • [26] Berven K.A., The genetic-basis of altitudinal variation in the wood from Rana sylvatica I. An experimental analysis of life-history traits, Evol., 1982, 36, 962-83 Google Scholar

  • [27] Yang L. H., Ostrovsky D., Rogers M. C., and Welker J. M., Intrapopulation variation in the natal origins and wing morphology of overwintering western monarch butterflies Danaus plexippus, Ecograph., 2015 CrossrefGoogle Scholar

  • [28] Brower L. P., Understanding and misunderstanding the migration of the monarch butterfly (Nymphalidae) in North America: 1857-1995, J. Lepid. Soc., 1995, 49, 304-385 Google Scholar

  • [29] Bates D., Maechler M., Bolker B.M., and Walker S.C., Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 2015, 67, 1-48 Google Scholar

  • [30] Harrell Jr F. E., and with contributions from Charles Dupont and many others, HMisc: Harrell miscellaneous, R package version 3.14-6, 2014, http://CRAN.R-project.org/package=Hmisc Google Scholar

  • [31] R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2014, http://www.R-project.org/ Google Scholar

  • [32] Altizer S., and Davis A. K., Populations of monarch butterflies with different migratory behaviors show divergence in wing morphology, Evol., 2010, 64, 1018-1028 Google Scholar

  • [33] Dockx C., Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba, Biol. J. Linnean Soc., 2007, 92, 605-616 Web of ScienceGoogle Scholar

  • [34] Reppert S. M., Gegear R. J., and Merlin C., Navigational mechanisms of migrating Web of ScienceGoogle Scholar

  • [monarch butterflies, Trends Neuros., 2010, 33, 399-406 Google Scholar

  • [35] Calmaestra R.G., and Moreno E., A phylogenetically-based analysis on the relationship between wing morphology and migratory behaviour in passeriformes, Ardea, 2001,89, 407-16 Google Scholar

  • [36] Johansson F., Soderquist M., and Bokma F., Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings, Biol. J. Linnean Soc, 2009, 97, 362-372 Web of ScienceGoogle Scholar

  • [37] Pennycuick C.J., Modelling the Flying Bird, Theoretical Ecology Series, 2008 Google Scholar

  • [38] Betts C. R., and Wootton R. J., Wing shape and flight behavior in butterflies (lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis, J. Exp. Biol., 1988, 138, 271-2888 Google Scholar

  • [39] Cespedes A., Penz C.M., and DeVries P.J., Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect, J. Ani. Ecol., 2015, 84,808-16 Web of ScienceGoogle Scholar

  • [40] Dudley R., The biomechanics of insect flight: Form, function, evolution, Princeton University Press, New Jersy, 2000 Google Scholar

  • [41] Gibo D.L., and Pallett M.J., Soaring flight of monarch butterflies Danaus plexippus (Lepitoptera, Danaidae) during the late summer migration in Southern Ontario Canada, Can. J. Zool., 1979, 57,1391-401 Google Scholar

  • [42] Urquhart F.A., The Monarch butterfly, University of Toronto Press, Toronto, Google Scholar

  • [ 1960 Google Scholar

  • [43] Satterfield D., and Davis A., Variation in wing characteristics of monarch butterflies Google Scholar

  • [during migration: Earlier migrants have redder and more elongated wings, Anim. Migr., 2014 Google Scholar

  • [44] Dockx C., Differences in phenotypic traits and migratory strategies between eastern North American monarch butterflies, Danaus plexippus (L.), Biol. J. Linnean Soc, 2012, 106, 717-736 Web of ScienceGoogle Scholar

About the article

Received: 2016-04-12

Accepted: 2016-06-13

Published Online: 2016-06-23


Citation Information: Animal Migration, ISSN (Online) 2084-8838, DOI: https://doi.org/10.1515/ami-2016-0003.

Export Citation

© 2016 Yiwen Li, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in