Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

Open Access
See all formats and pricing
More options …

Migration and winter distribution of the Chestnutcollared Longspur

Kevin Ellison / Emily McKinnon / Steve Zack / Sarah Olimb / Robert Sparks / Erin Strasser
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/ami-2017-0005


The Chestnut-collared Longspur (Calcarius ornatus) is one of five grassland songbirds, endemic within North America, with populations that have declined >65% since the 1960s. These species breed and winter in the northern and southern Great Plains, respectively. Identifying migration routes, wintering sites, and the timing of their habitat use is key for understanding the relative magnitude of threats across the annual cycle and effectively targeting habitats for conservation. We tracked migratory movements of seven Chestnut-collared Longspurs with light-level geolocators deployed in Canada. Individuals wintered up to 112-1,200km apart. All followed the Central Flyway, circumvented high-elevation terrain, and traveled east of the breeding location. Unlike most songbirds, the durations of spring and fall migrations were similar; on average 42 ± 7d and 41 ± 5d during fall and spring migrations, respectively, for an approximately 2,000km migration; this highlights the need to better understand habitat requirements during migration for grassland songbirds. Using geospatial habitat data, we assessed winter distribution overlap with four other endemic grassland songbirds; wintering range overlapped 63-99%. Future studies should use more precise devices (e.g., archival GPS units), programmed for data collection dates from this study, to identify specific migratory sites for better conserving this and associated grassland species.

Keywords : cropland; geo-logger; grasslands; migration rate; northern Great Plains; songbird


  • [1] North American Bird Conservation Initiative, U.S. Committee, The State of the Birds, U.S. Department of Interior, Washington, DC, 2009Google Scholar

  • [2] Sauer J.R., Niven D.K., Hines J.E., Ziolkowski D.J. Jr., Pardieck K.L., Fallon J.E., et al., The North American Breeding Bird Survey, Results and Analysis 1966-2015, Version 02.07.2017 USGS Patuxent Wildlife Research Center, Laurel, MDGoogle Scholar

  • [3] Gage A.M., Olimb S.K., Nelson J., Plowprint: tracking cumulative cropland expansion to target grassland conservation. Great Plains Research, 2016, 26, 107-116Google Scholar

  • [4] Hill J.M., Egan J.F., Stauffer G.E., Diefenbach D.R., Habitat Availability Is a More Plausible Explanation than Insecticide Acute Toxicity for U.S. Grassland Bird Species Declines. PLoS ONE 2014, 9:e98064, https://doi.org/10.1371/journal.pone.0098064Google Scholar

  • [5] Pool D.B., Panjabi A.O., Macias-Duarte A., Solhjem D.M., Rapid expansion of croplands in Chihuahua, Mexico threatens declining North American grassland bird species. Biol. Conserv., 2014, 170, 274-281Google Scholar

  • [6] Herkert J.R., Reinking D.L., Wiedenfeld D.A., Winter M., Zimmerman J.L., Jensen W.E., et al., Effects of prairie fragmentation on the nest success of breeding birds in the midcontinental United States, Conserv. Biol., 2003, 17, 587-594Google Scholar

  • [7] Mineau P., Whiteside M., Pesticide acute toxicity is a better correlate of U.S. grassland bird declines than agricultural intensification, PLoS ONE, 2013, 8:e57457. doi:CrossrefGoogle Scholar

  • [8] Langham G.M., Schuetz J.G., Distler T., Soykan C.U., Wilsey C., Conservation status of North American birds in the face of future climate change, PloS ONE 2015, 10:e0135350.Google Scholar

  • [9] Jarzyna M.A., Zuckerberg B., Finley A.O., Porter W.F., Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change, Landsc. Ecol., 2016, 31, 2275-2290aGoogle Scholar

  • [10] Nixon A., Fisher R., Stralberg D., Bayne, E., Farr D., Projected responses of North American grassland songbirds to climate change and habitat availability at their northern range limits in Alberta, Canada, Avian Conserv. Ecol., 2016, http://www.ace-eco.org/vol11/iss2/art2/Google Scholar

  • [11] Bleho B., Ellison K., Hill D. P., Gould L.K., Chestnut-collared Longspur (Calcarius ornatus), Birds North Am. Online, 2015, http://bna.birds.cornell.edu/bna/species/288Google Scholar

  • [12] Mengel R.M., The North American Central Plains as an Isolating Agent in Bird Speciation. In Pleistocene and Recent Environments of the Central Great Plains, W. Dort and J.K. Jones, Jr., eds. 1970, Pp. 279-340, Univ Press of Kansas, Lawrence, KSGoogle Scholar

  • [13] Knopf F.L., Avian assemblages on altered grasslands, Stud. Avian Biol., 1994, 15, 247-257Google Scholar

  • [14] Browder S.F., Johnson D.H., Ball I.J., Assemblages of breeding birds as indicators of grassland condition. Ecol. Indicators 2002, 2.3, 257-270Google Scholar

  • [15] Macías-Duarte A., Montoya A.B., Méndez-González C.E., Rodríguez-Salazar J.R., Hunt W.G., Krannitz P.G., Factors influencing habitat use by migratory grassland birds in the state of Chihuahua, Mexico, Auk 2009, 126, 896-905Google Scholar

  • [16] Stanley C.Q., McKinnon E.A., Fraser K.C., MacPherson M.P., Casbourn G., Friesen L., et al. Connectivity of Wood Thrush breeding, wintering, and migration sites based on range-wide tracking. Conserv Biol 2015, 29, 164-174Google Scholar

  • [17] Newton I., The Migration Ecology of Birds, 2008, Academic Press, LondonGoogle Scholar

  • [18] Ross J. D., Bridge E.S., Rozmarynowycz M.J., Bingman V.P., Individual variation in migratory path and behavior among Eastern Lark Sparrows. Anim. Migrat. 2014, 2, 29-33Google Scholar

  • [19] Rohwer S., Butler L.K., Froehlich D.R., Greenberg R., Marra P. P., Ecology and demography of east-west differences in molt scheduling of Neotropical migrant passerines, In: R. Greenberg and P.P. Marra (Eds.) Birds of two worlds: the ecology and evolution of migration, 2005, pp 87-105, Johns Hopkins Univ. Press, Baltimore, MDGoogle Scholar

  • [20] Hobson K.A., Using endogenous and exogenous markers in bird conservation, Bird Conserv. Int., 2008, 18, S174-S199Google Scholar

  • [21] Cohen E.B., Hostetler J.A., Royle J.A., Marra P.P.,Estimating migratory connectivity of birds when re-encounter probabilities are heterogeneous. Ecol. Evol., 2014, 4:1659-1670.Google Scholar

  • [22] Jones S.L., Dieni J.S., Green M.T., Gouse P.J., Annual return rates of breeding grassland songbirds. Wilson J. Ornithol., 2007, 119, 89-94Google Scholar

  • [23] Davis S.K., Robbins M.B., Dale B.C., Sprague’s Pipit (Anthus spragueii), Birds North Am. Online, 2014, https://birdsna.org/Species-Account/bna/species/sprpipGoogle Scholar

  • [24] Shane T.G., Lark Bunting (Calamospiza melanocorys), Birds North Am. Online, 2000, https://birdsna.org/Species-Account/bna/species/larbunGoogle Scholar

  • [25] Green M.T., Lowther P.E., Jones S.L., Davis S.K., Dale B.C., Baird’s Sparrow (Ammodramus bairdii), Birds North Am. Online, 2002, https://birdsna.org/Species-Account/bna/species/baispaGoogle Scholar

  • [26] With K.A., McCown’s Longspur (Rhynchophanes mccownii), Birds North Am. Online, 2010, https://birdsna.org/Species-Account/bna/species/mcclonGoogle Scholar

  • [27] Piersma T., Hop, skip, or jump? Constraints on migration of arctic waders by feeding, fattening, and flight speed, Limosa, 1987, 60, 185-194, (in Dutch).Google Scholar

  • [28] Warnock N. Stopping vs. staging: the difference between a hop and a jump, J. Avian Biol., 2010, 41, 621-626CrossrefGoogle Scholar

  • [29] La Sorte F.A., Fink D., Hochachka W.M., Farnsworth A., Rodewald A.D., Rosenberg K.V., et al. The role of atmospheric conditions in the seasonal dynamics of North American migration flyways, J. Biogeogr., 2014, 41,1685-1696Google Scholar

  • [30] Alerstam, T., 2011, Optimal bird migration revisited. J. Ornithol., 152: 5-23.Google Scholar

  • [31] Lynn S.E., Wingfield J.C., Dissociation of testosterone and aggressive behavior during the breeding season in male Chestnut-collared Longspurs, Calcarius ornatus, Gen. Comp. Endocrinol., 2008, 156, 181-189Google Scholar

  • [32] Rappole J.H., Tipton A.R., New harness design for attachment of radio transmitters to small passerines, Condor 1991, 62, 335-337Google Scholar

  • [33] Wotherspoon S.J., Sumner M.D., Lisovski S., R Package: SGAT, 2016a, https://api.github.com.Google Scholar

  • [34] Rakhimberdiev E., Senner N.R., Verhoeven M.A., Winkler D.W., Bouten W., Piersma T., Comparing inferences of solar geolocation data against high-precision GPS data: annual movements of a double-tagged Black-tailed Godwit. J. Avian Biol., 2016, 47, 589-596Google Scholar

  • [35] Wotherspoon S.J., Sumner M.D., Lisovski S., R Package: TwGeos, 2016b, https://api.github.comGoogle Scholar

  • [36] Lisovski S., Hahn S., GeoLight-processing and analysing light‐based geolocator data in R, 2012, Methods Ecol. Evol., 3, 1055-1059Google Scholar

  • [37] Fudickar A.M., Wikelski M., Partecke J., Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats. Methods Ecol. Evol., 2012, 3, 47-52Google Scholar

  • [38] Venables W.N., Ripley B.D., Modern Applied Statistics with S, 2002, Fourth Edition, Springer, New York, ISBN 0-387-95457-0Google Scholar

  • [39] R Development Core Team, R: a language and environment for statistical computing. 2016, R Foundation for Statistical Computing, Vienna, Austria.Google Scholar

  • [40] BirdLife International and NatureServe, Bird species distribution maps of the world. Version 3.0, 2013, BirdLife International, Cambridge, UK and NatureServe, ArlingtonGoogle Scholar

  • [41] Pool D. B., Panjabi A.O., Assessment and Revisions of North American Grassland Priority Conservation Areas, 2011, Background Paper, Commission for Environmental Cooperation, 66 pp.Google Scholar

  • [42] INEGI, Uso de suelo y vegetación, Serie V., Escala 1:250,000, 2013, Mexico, (in Spanish)Google Scholar

  • [43] eBird, eBird: An online database of bird distribution and abundance, 2016, http://www.ebird.orgGoogle Scholar

  • [44] Finch T., Butler S.J., Franco A.M.A., Cresswell W., Low migratory connectivity is common in long-distance migrant birds. J. Animal Ecol., 2017, doi:CrossrefGoogle Scholar

  • [45] Doherty K.E., Ryba, A.J., Stemler, C.L., Niemuth, N.D., W.A. Meeks. Conservation planning in an era of change: state of the US Prairie Pothole Region. Wildl. Soc. Bull., 2013, 37, 546-563Google Scholar

  • [46] Moreno-Contreras I., Silva H.G.D., Cruz-Nieto J., Ordaz-Morales J., Botello A., Integrating Community Ecology and Gap Analysis for Bird Conservation: Where to Locate Chihuahua’s Next Protected Areas? Natural Areas J., 2017, 37, 69-85Google Scholar

  • [47] SEMARNAT, Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección Ambiental - Especies nativas de México de flora y fauna silvestres - Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio - lista de especies en riesgo. Diario Oficial de la Federación. 30 de diciembre de 2010, Segunda Sección, México, D.F, (in Spanish)Google Scholar

  • [48] Maher W. J., Birds: I. Population dynamics. Saskatoon, Saskatchewan: Canadian Com. Internl. Biol. Prog., 1973, Matador Project Tech. Rep. no. 34.Google Scholar

  • [49] Salt W. R., Salt J.R., The birds of Alberta with their ranges in Saskatchewan and Manitoba. 1976, Edmonton: HurtigGoogle Scholar

  • [50] Cleveland N. J., Edie S., Grieef G.D., Holland G.E., Koes R.F., Birder’s guide to southeastern Manitoba, 1988, 2nd ed., Eco Series no. 1. Winnipeg: Manitoba Nat. Soc.Google Scholar

  • [51] Janssen R.B., Birds in Minnesota, 1984, Minneapolis: Univ. Minnesota PressGoogle Scholar

  • [52] Nilsson C., Klaassen R. H., Alerstam T., Differences in speed and duration of bird migration between spring and autumn. Am. Nat., 2013, 181, 837-845Google Scholar

  • [53] McKinnon E.A., Fraser K.C., Stutchbury B.J., New discoveries in landbird migration using geolocators, and a flight plan for the future, Auk 2013, 130, 211-222Google Scholar

  • [54] Cooper N.W., Hallworth M.T., Marra P.P., Light‐level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long‐distance migratory songbird. J. Avian Biol., 2017, 48, 209-219CrossrefGoogle Scholar

  • [55] McKinnon L., Smith P.A., Nol E., Martin J.L, Doyle F.I., Abraham K.F., et al. Lower predation risk for migratory birds at high latitudes. Science, 2010, 327, 326-327Google Scholar

  • [56] Finlayson C., Avian survivors: The History and Biogeography of Palearctic Birds, 2011, A&C Black, LondonGoogle Scholar

  • [57] Pool D.B., Macías-Duarte A., Panjabi A.O., Levandoski G., Youngberg E., Chihuahuan Desert Grassland Bird Conservation Plan, 2012, version 1.0. Rocky Mountain Bird Observatory, Brighton, CO, RMBO Technical Report I-RGJV-11-01, 74 pp.Google Scholar

  • [58] Drum R.G., Ribic C.A., Koch K., Lonsdorf E., Grant E., Ahlering M., et al., Strategic Grassland bird conservation throughout the annual cycle: Linking policy alternatives, landowner decisions, and biological population outcomes. PloS ONE, 2015, 10, e0142525.Google Scholar

  • [59] Marra P.P., Hunter D., Perrault A.M., Migratory connectivity and the conservation of migratory animals, Environ. Law, 2011, 317-354Google Scholar

  • [60] Hostetler J.A., Sillett T.S., Marra P.P., Full-annual-cycle population models for migratory birds, Auk, 2015, 132, 433-449Google Scholar

  • [61] IUCN, The IUCN Red List of Threatened Species, Version 2016-2, [http://www.iucnredlist.orgGoogle Scholar

  • [62] Species at Risk Public Registry, www.sararegistry.gc.ca, Version 21 September 2016Google Scholar

About the article

Received: 2017-08-18

Accepted: 2017-12-15

Published Online: 2017-12-29

Published in Print: 2017-12-20

Citation Information: Animal Migration, Volume 4, Issue 1, Pages 37–50, ISSN (Online) 2084-8838, DOI: https://doi.org/10.1515/ami-2017-0005.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in