Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

Open Access
Online
ISSN
2084-8838
See all formats and pricing
More options …

Wintering Areas, Migratory Connectivity and Habitat Fidelity of Three Declining Nearctic- Neotropical Migrant Swallows

Tara Leah Imlay / Keith A. Hobson / Amélie Roberto-Charron / Marty L. Leonard
Published Online: 2018-10-23 | DOI: https://doi.org/10.1515/ami-2018-0001

Abstract

Conservation efforts directed at population declines for migratory animals must consider threats occurring at different stages often separated by vast distances. Furthermore, connectivity between populations and fidelity of individuals to specific habitats during the annual cycle are also important considerations. Avian aerial insectivores are experiencing steep population declines in North America, and those declines may be driven, in part, by conditions on the wintering grounds. Here, using geolocators (2 species; 4 individuals) and stable isotope (δ2H, δ13C and δ15N) measurements of feathers (3 species; 841 individuals), we identified approximate winter areas, and assessed migratory connectivity and among-year winter habitat fidelity for three aerial insectivores (Bank Swallow Riparia riparia, Barn Swallow Hirundo rustica and Cliff Swallow Petrochelidon pyrrhonota) that breed in northeastern North America. All three species of swallows are declining in this region. Our results, largely from the stable isotope analysis, suggest that these species likely winter throughout the Cerrado, La Plata Basin, and the Pampas, in South America. These most likely areas were similar among years (2013-2016) for Bank and Cliff Swallows, but varied for Barn Swallows (2014-2016). We found weak migratory connectivity for all three species, and, with one exception, weak habitat fidelity among years for individuals. For individual Barn Swallows captured in two or more years, we found high repeatability in δ13C values, suggesting some fidelity to similar habitats among years. The most likely wintering areas for these species coincide with large areas of South America experiencing high rates of land-use change.

This article offers supplementary material which is provided at the end of the article.

Keywords: carbon-13; deuterium; geolocator; Hirundo rustica; individual consistency; nitrogen-15; Petrochelidon pyrrhonota; repeatability; Riparia riparia; stable isotopes

References

  • 1] Egevang C., Stenhouse I.J., Phillips R.A., Petersen A., Fox J.W., Silk J.R.D., Tracking of Arctic Terns Sterna paradisaea reveals longest animal migration, Proc. Natl. Acad. Sci. 2010, 107, 2078-2081Google Scholar

  • [2] Schofield G., Hobson V.J., Fossette S., Lilley M.K.S., Katselidis K.A., Hays G.C., Fidelity to foraging sites, consistency of migration routes and habitat modulation of home range by sea turtles, Divers. Distrib. 2010, 16, 840-853Google Scholar

  • [3] Cherry S.G., Derocher A.E., Lunn N.J., Habitat-mediated timing of migration in polar bears: an individual perspective, Ecol. Evol. 2016, 6, 5032-5042Google Scholar

  • [4] Mellone U., Lopez-Lopez P., Liminana R., Piasevoli G., Urios V., The trans-equatorial loop migration system of Eleonora’s Falcon: differences in migration patterns between age classes, regions and seasons, J. Avian Biol. 2013, 44, 417-426Google Scholar

  • [5] Muller M.S., Massa B., Phillips R.A., Omo D., Individual consistency and sex differences in migration strategies of Scopoli’s Shearwaters Calonectris diomedea differences, Curr. Zool. 2014, 60, 631-641Google Scholar

  • [6] Bunnefeld N., Borger L., Van Moorter B., Rolandsen C.M., Dettki H., Solberg E.J., et al., A model-driven approach to quantify migration patterns: Individual, regional and yearly differences, J. Anim. Ecol. 2011, 80, 466-476CrossrefGoogle Scholar

  • [7] Wilcove D.S., Wikelski M., Going, going, gone: Is animal migration disappearing?, PLoS Biol. 2008, 6, 1361-1364Google Scholar

  • [8] Webster M.S., Marra P.P., The importance of understanding migratory connectivity and seasonal interactions, In: Greenberg, R., Marra, P.P. (Eds.), Birds of Two Worlds: The Ecology and Evolution of Migration, John Hopkins University Press, Baltimore, Maryland, USA, 2005, 199-209Google Scholar

  • [9] Webster M.S., Marra P.P., Haig S.M., Bensch S., Holmes R.T., Links between worlds: unraveling migratory connectivity, Trends Ecol. Evol. 2002, 17, 76-83CrossrefGoogle Scholar

  • [10] Taylor C.M., Norris D.R., Population dynamics in migratory networks, Theor. Ecol. 2010, 3, 65-73Google Scholar

  • [11] Morales J.M., Moorcroft P.R., Matthiopoulos J., Frair J.L., Kie J.G., Powell R.A., et al., Building the bridge between animal movement and population dynamics, Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2289-2301Google Scholar

  • [12] Matthiopoulos J., Harwood J., Thomas L., Metapopulation consequences of site fidelity for colonially breeding mammals and birds, J. Anim. Ecol. 2005, 74, 716-727Google Scholar

  • [13] Rubenstein D.R., Chamberlain C.P., Holmes R.T., Ayres M.P., Waldbauer J.R., Graves G.R., et al., Linking breeding and wintering ranges of a migratory songbird using stable isotopes, Science (80-. ). 2002, 295, 1062-1066Google Scholar

  • [14] van Wijk R.E., Bauer S., Schaub M., Repeatability of individual migration routes, wintering sites and timing in a long-distance migrant bird, Ecol. Evol. 2016, 6, 8679-8685Google Scholar

  • [15] Stutchbury B.J.M., Tarof S.A., Done T., Gow E., Kramer P.M., Tautin J., et al., Tracking long-distance songbird migration by using geolocators, Science (80-. ). 2009, 323, 896-896Google Scholar

  • [16] Szep T., Liechti F., Nagy K., Nagy Z., Hahn S., Discovering the migration and non-breeding areas of Sand Martins and House Martins breeding in the Pannonian basin (central-eastern Europe), J. Avian Biol. 2017, 48, 114-122CrossrefGoogle Scholar

  • [17] English P.A., Mills A.M., Cadman M.D., Heagy A.E., Rand G.J., Green D.J., et al., Tracking the migration of a nocturnal aerial insectivore in the Americas, BMC Zool. 2017, 2, 5Google Scholar

  • [18] Hallworth M.T., Scott Sillett T., Van Wilgenburg S.L., Hobson K.A., Marra P.P., Migratory connectivity of a neotropical migratory songbird revealed by archival light-level geolocators, Ecol. Appl. 2015, 25, 336-347Google Scholar

  • [19] Fraser K.C., Shave A., Savage A., Ritchie A., Bell K., Siegrist J., et al., Determining fine-scale migratory connectivity and habitat selection for a migratory songbird by using new GPS technology, J. Avian Biol. 2017, 48, 339-345CrossrefGoogle Scholar

  • [20] Cooper N.W., Hallworth M.T., Marra P.P., Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird, J. Avian Biol. 2017, 48, 209-219CrossrefGoogle Scholar

  • [21] Finch T., Saunders P., Aviles J.M., Bermejo A., Catry I., de la Puente J., et al., A pan-European, multipopulation assessment of migratory connectivity in a near-threatened migrant bird, Divers. Distrib. 2015, 21, 1051-1062Google Scholar

  • [22] Renfrew R.B., Kim D., Perlut N., Smith J., Fox J., Marra P.P., Phenological matching across hemispheres in a long-distance migratory bird, Divers. Distrib. 2013, 19, 1-12Google Scholar

  • [23] Costantini D., Moller A.P., A meta-analysis of the effects of geolocator application on birds, Curr. Zool. 2013, 59, 697-706Google Scholar

  • [24] Gomez J., Michelson C.I., Bradley D.W., Norris D.R., Berzins L.L., Dawson R.D., et al., Effects of geolocators on reproductive performance and annual return rates of a migratory songbird, J. Ornithol. 2014, 155, 1-8Google Scholar

  • [25] Scandolara C., Rubolini D., Ambrosini R., Caprioli M., Hahn S., Liechti F., et al., Impact of miniaturized geolocators on Barn Swallow Hirundo rustica fitness traits, J. Avian Biol. 2014, 45, 1-7Google Scholar

  • [26] Morganti M., Rubolini D., Akesson S., Bermejo A., de la Puente J., Lardelli R., et al., Effect of light-level geolocators on apparent survival of two highly aerial swift species, J. Avian Biol. 2018, 49, 1-10Google Scholar

  • [27] Hobson K.A., Stable-carbon and nitrogen isotope ratios of songbird feathers grown in two terrestrial biomes: implications for evaluating trophic relationships and breeding origins, Condor 1999, 799-805CrossrefGoogle Scholar

  • [28] Inger R., Bearhop S., Applications of stable isotope analyses to avian ecology, Ibis (Lond. 1859). 2008, 150, 447-461Google Scholar

  • [29] Rubenstein D.R., Hobson K.A., From birds to butterflies: animal movement patterns and stable isotopes, Trends Ecol. Evol. 2004, 19, 256-63CrossrefGoogle Scholar

  • [30] Bowen G.J., Wassenaar L.I., Hobson K.A., Global application of stable hydrogen and oxygen isotopes to wildlife forensics, Oecologia 2005, 143, 337-348Google Scholar

  • [31] Powell R.L., Yoo E.-H., Still C.J., Vegetation and soil carbon-13 isoscapes for South America: integrating remote sensing and ecosystem isotope measurements, Ecosphere 2012, 3, 109Google Scholar

  • [32] Hobson K.A., Clark R.G., Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation, Condor 1992, 94, 189-197CrossrefGoogle Scholar

  • [33] Hobson K.A., Van Wilgenburg S.L., Wassenaar L.I., Larson K., Linking hydrogen (δ2H) isotopes in feathers and precipitation: Sources of variance and consequences for assignment to isoscapes, PLoS One 2012, 7, e35137Google Scholar

  • [34] Hache S., Hobson K.A., Villard M.-A., Bayne E.M., Assigning birds to geographic origin using feather hydrogen isotope ratios (δ2H): importance of year, age, and habitat, Can. J. Zool. 2012, 90, 722-728Google Scholar

  • [35] Hobson K.A., Van Wilgenburg S.L., Faaborg J., Toms J.D., Rengifo C., Sosa A.L., et al., Connecting breeding and wintering grounds of Neotropical migrant songbirds using stable hydrogen isotopes: a call for an isotopic atlas of migratory connectivity, J. F. Ornithol. 2014, 85, 237-257Google Scholar

  • [36] Garcia-Perez B., Hobson K.A., A multi-isotope (δ2H, δ13C, δ5N) approach to establishing migratory connectivity of Barn Swallow (Hirundo rustica), Ecosphere 2014, 5, 1-12Google Scholar

  • [37] Hjernquist M.B., Veen T., Font L., Klaassen M., High individual repeatability and population differentiation in stable isotope ratios in winter-grown Collared Flycatcher Ficedula albicollis feathers, J. Avian Biol. 2009, 40, 102-107Google Scholar

  • [38] Yohannes E., Bensch S., Lee R., Philopatry of winter moult area in migratory Great Reed Warblers Acrocephalus arundinaceus demonstrated by stable isotope profiles, J. Ornithol. 2008, 149, 261-265Google Scholar

  • [39] Goodenough A.E., Coker D.G., Wood M.J., Rogers S.L., Overwintering habitat links to summer reproductive success: intercontinental carry-over effects in a declining migratory bird revealed using stable isotope analysis, Bird Study 2017, 64, 433-444Google Scholar

  • [40] Hobson K.A., Isotopic ornithology: A perspective, J. Ornithol. 2011, 152, S49-S66Google Scholar

  • [41] Michel N.L., Smith A.C., Clark R.G., Morrissey C.A., Hobson K.A., Differences in spatial synchrony and interspecific concordance inform guild-level population trends for aerial insectivorous birds, Ecography (Cop.). 2016, 39, 774-786Google Scholar

  • [42] Nebel S., Mills A., McCracken J.D., Taylor P.D., Declines of aerial insectivores in North America follow a geographic gradient, Avian Conserv. Ecol. 2010, 5, 1Google Scholar

  • [43] Shutler D., Hussell D.J.T., Norris D.R., Winkler D.W., Robertson R.J., Bonier F., et al., Spatiotemporal patterns in nest box occupancy by Tree Swallows across North America, Avian Conserv. Ecol. 2012, 7, 3Google Scholar

  • [44] Smith A.C., Hudson M.-A.R., Downes C.M., Francis C.M., Change points in the population trends of aerial-insectivorous birds in North America: synchronized in time across species and regions, PLoS One 2015, 10, e0130768Google Scholar

  • [45] Imlay T.L., Mills Flemming J., Saldanha S., Wheelwright N.T., Leonard M.L., Breeding phenology and performance for four swallows over 57 years: relationships with temperature and precipitation, Ecosphere 2018, 9, e02166Google Scholar

  • [46] Sauer J.R., Niven D.K., Hines J.E., Ziolkowski, D. J. J., The North American Breeding Bird Survey, Results and Analysis 1966 -2015. Version 2.07.2017, 2017Google Scholar

  • [47] Garrison B.A., Bank Swallow (Riparia riparia), version 2.0, The Birds of North America (P. G. Rodewald, Ed.), Ithaca Cornell Lab Ornithol. 1999Google Scholar

  • [48] Brown C.R., Bomberger Brown M., Barn Swallow (Hirundo rustica), version 2.0, The Birds of North America (P. G. Rodewald, Ed.), Ithaca Cornell Lab Ornithol. 1999Google Scholar

  • [49] Brown C.R., Bomberger Brown M., Pyle P., Patten M.A., Cliff Swallow (Petrochelidon pyrrhonata), version 3.0, The Birds of North America (P. G. Rodewald, Ed.), Ithaca Cornell Lab Ornithol. 2017Google Scholar

  • [50] Imlay T.L., Mann H.A.R., Leonard M.L., No effect of insect abundance on nestling survival and mass in Barn, Cliff and Tree swallows, Avian Conserv. Ecol. 2017, 12, 19Google Scholar

  • [51] Rappole J.H., Tipton A.R., New harness design for attachment of radio transmitters to small passerines, J. F. Ornithol. 1991, 62, 335-337Google Scholar

  • [52] Pyle P., Identification guide to North American birds. Part I. Columbidae to Ploceidae, State Creek Press, Bolinas, California, USA, 1997Google Scholar

  • [53] Imlay T., Steenweg R., Garcia-Perez B., Hobson K., Rohwer S., Temporal and spatial patterns of flight and body feather molt for Bank, Barn and Cliff Swallows, J. F. Ornithol. 2017, 88, 405-415Google Scholar

  • [54] Wotherspoon S., Sumner M.D., Lisovski S., TwGeos: Basic data processing for light-level geolocation archival tags. Version 0.0-1, 2016Google Scholar

  • [55] Sumner M.D., Wotherspoon M.A., Hindell S.J., Bayesian estimation of animal movement from archival and satellite tags, PLoS One 2009, 4, 1055-1059Google Scholar

  • [56] Lisovski S., Hahn S., GeoLight - processing and analysing light-based geolocator data in R, Methods Ecol. Evol. 2012, 3, 1055-1059Google Scholar

  • [57] Wassenaar L.I., Hobson K.A., Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for animal migration studies, Isotopes Environ. Health Stud. 2003, 39, 211-217Google Scholar

  • [58] eBird, eBird: An online database of bird distribution and abundance [web application], EBird, Ithaca, NY 2012Google Scholar

  • [59] Ridgely R.S., Allnutt T.F., Brooks T., McNicol D.K., Mehlman D.W., Young B.E., et al., Digital distribution maps of the birds of the western hemisphere, version 1.0, NatureServe, Arlington, Virginia, USA 2003Google Scholar

  • [60] Hobson K.A., Kardynal K.J., An isotope (δ34S) filter and geolocator results constrain a dual feather isoscape (δ2H, δ13C) to identify the wintering grounds of North American Barn Swallows, Auk 2016, 133, 86-98Google Scholar

  • [61] Van Wilgenburg S.L., Hobson K.A., Combining stableisotope (δD) and band recovery data to improve probabilistic assignment of migratory birds to origin, Ecol. Appl. 2011, 21, 1340-1351Google Scholar

  • [62] Ambrosini R., Moller A.P., Saino N., A quantitative measure of migratory connectivity, J. Theor. Biol. 2009, 257, 203-211Google Scholar

  • [63] Finch T., Butler S.J., Franco A.M.A., Cresswell W., Low migratory connectivity is common in long-distance migrant birds, J. Anim. Ecol. 2017, 86, 662-673CrossrefGoogle Scholar

  • [64] R Core Team, R: A Language and Environment for Statistical Computing, 2017Google Scholar

  • [65] Bates D., Maechler M., Bolker B., Walker S., Fitting linear mixed-effects models using lme4, J. Stat. Softw. 2015, 67, 1-48Google Scholar

  • [66] Hobson K.A., Kardynal K.J., Wilgenburg S.L. Van, Albrecht G., Salvadori A., Cadman M.D., et al., A continent-wide migratory divide in North American breeding Barn Swallows (Hirundo rustica), PLoS One 2015, 10, e0129340Google Scholar

  • [67] Baker A.J., Gonzalez P.M., Piersma T., Niles L.J., de Lima Serrano do Nascimento I., Atkinson P.W., et al., Rapid population decline in Red Knots: fitness consequences of decreased refuelling rates and late arrival in Delaware Bay, Proc. R. Soc. B Biol. Sci. 2004, 271, 875-882Google Scholar

  • [68] Woodworth B.K., Francis C.M., Taylor P.D., Inland flights of young Red-eyed Vireos Vireo olivaceus in relation to survival and habitat in a coastal stopover landscape, J. Avian Biol. 2014, 45, 387-395Google Scholar

  • [69] Newton I., Weather-related mass-mortality in migrants, Ibis (Lond. 1859). 2007, 149, 453-467Google Scholar

  • [70] Wellicome T.I., Fisher R.J., Poulin R.G., Todd L.D., Bayne E.M., Flockhart D.T.T., et al., Apparent survival of adult Burrowing Owls that breed in Canada is influenced by weather during migration and on their wintering grounds, Condor 2014, 116, 446-458Google Scholar

  • [71] Lambin E.F., Geist H.J., Lepers E., Dynamics of land-use and land-cover change in tropical regions, Annu. Rev. Environ. Resour. 2003, 28, 205-241CrossrefGoogle Scholar

  • [72] Hansen M.C., Stehman S. V., Potapov P. V., Quantification of global gross forest cover loss, Proc. Natl. Acad. Sci. 2010, 107, 8650-8655Google Scholar

  • [73] Davidson N.C., How much wetland has the world lost? Long-term and recent trends in global wetland area, Mar. Freshw. Res. 2014, 65, 934-941Google Scholar

  • [74] Lee S.-J., Berbery E.H., Land cover change effects on the climate of the La Plata Basin, J. Hydrometeorol. 2012, 13, 84-102CrossrefGoogle Scholar

  • [75] Sano E.E., Rosa R., Brito J.L.S., Ferreira L.G., Land cover mapping of the tropical savanna region in Brazil, Environ. Monit. Assess. 2010, 166, 113-124Google Scholar

  • [76] Viglizzo E.F., Frank F.C., Carreno L. V., Jobbagy E.G., Pereyra H., Clatt J., et al., Ecological and environmental footprint of 50 years of agricultural expansion in Argentina, Glob. Chang. Biol. 2011, 17, 959-973Google Scholar

  • [77] Loarie S.R., Lobell D.B., Asner G.P., Mu Q., Field C.B., Direct impacts on local climate of sugar-cane expansion in Brazil, Nat. Clim. Chang. 2011, 1, 105-109Google Scholar

  • [78] Luyssaert S., Jammet M., Stoy P.C., Estel S., Pongratz J., Ceschia E., et al., Land management and land-cover change have impacts of similar magnitude on surface temperature, Nat. Clim. Chang. 2014, 4, 389-393Google Scholar

  • [79] Kelly J.F., Atudorei V., Sharp Z.D., Finch D.M., Insights into Wilson’s Warbler migration from analyses of hydrogen stable-isotope ratios, Oecologia 2002, 130, 216-221Google Scholar

  • [80] Hahn S., Amrhein V., Zehtindijev P., Liechti F., Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird, Oecologia 2013, 173, 1217-1225Google Scholar

  • [81] Moller A.P., Hobson K.A., Heterogeneity in stable isotope profiles predicts coexistence of populations of Barn Swallows Hirundo rustica differing in morphology and reproductive performance, Proc. R. Soc. B Biol. Sci. 2004, 271, 1355-1362Google Scholar

  • [82] Fraser K.C., Stutchbury B.J.M., Silverio C., Kramer P.M., Barrow J., Newstead D., et al., Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore, Proc. R. Soc. B Biol. Sci. 2012, 279, 4901-4906Google Scholar

  • [83] Trierweiler C., Klaassen R.H.G., Drent R.H., Exo K.-M., Komdeur J., Bairlein F., et al., Migratory connectivity and population- specific migration routes in a long-distance migratory bird, Proc. R. Soc. B Biol. Sci. 2014, 281, 20132897Google Scholar

  • [84] Szep T., Hobson K.A., Vallner J., Piper S.E., Kovacs B., Szabo D.Z., et al., Comparison of trace element and stable isotope approaches to the study of migratory connectivity: an example using two hirundine species breeding in Europe and wintering in Africa, J. Ornithol. 2009, 150, 621-636Google Scholar

  • [85] Lopez-Calderon C., Hobson K.A., Marzal A., Balbontin J., Reviriego M., Magallanes S., et al., Wintering areas predict age-related breeding phenology in a migratory passerine bird, J. Avian Biol. 2017, 48, 631-639Google Scholar

  • [86] Norris D.R., Marra P.P., Kyser T.K., Sherry T.W., Ratcliffe L.M., Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird, Proc. R. Soc. B Biol. Sci. 2004, 271, 59-64Google Scholar

  • [87] Saino N., Ambrosini R., Caprioli M., Romano M., Rubolini D., Scandolara C., et al., Sex-dependent carry-over effects on timing of reproduction and fecundity of a migratory bird, J. Anim. Ecol. 2017, 86, 239-249Google Scholar

  • [88] Cowley E., Siriwardena G.M., Long-term variation in survival rates of Sand Martins Riparia riparia: dependence on breeding and wintering ground weather, age and sex, and their population consequences, Bird Study 2005, 52, 237-251CrossrefGoogle Scholar

  • [89] Drake A., Rock C., Quinlan S.P., Green D.J., Carry-over effects of winter habitat vary with age and sex in Yellow Warblers Setophaga petechia, J. Avian Biol. 2013, 44, 321-330Google Scholar

  • [90] Lopez-Calderon C., Hobson K.A., Marzal A., Balbontin J., Reviriego M., Magallanes S., et al., Environmental conditions during winter predict age- and sex-specific differences in reproductive success of a trans-Saharan migratory bird, Sci. Rep. 2017, 7, 18082CrossrefGoogle Scholar

  • [91] Tonra C.M., Both C., Marra P.P., Incorporating site and year-specific deuterium ratios (d2H) from precipitation into geographic assignments of a migratory bird, J. Avian Biol. 2015, 46, 266-274Google Scholar

  • [92] Vander Zanden H.B., Wunder M.B., Hobson K.A., Van Wilgenburg S.L., Wassenaar L.I., Welker J.M., et al., Contrasting assignment of migratory organisms to geographic origins using long-term versus year-specific precipitation isotope maps, Methods Ecol. Evol. 2014, 5, 891-900Google Scholar

  • [93] van Dijk J.G.B., Meissner W., Klaassen M., Improving provenance studies in migratory birds when using feather hydrogen stable isotopes, J. Avian Biol. 2014, 45, 103-108CrossrefGoogle Scholar

  • [94] Van Wilgenburg S.L., Hobson K.A., Brewster K.R., Welker J.M., Assessing dispersal in threatened migratory birds using stable hydrogen isotope (δD) analysis of feathers, Endanger. Species Res. 2012, 16, 17-29Google Scholar

  • [95] Gomez C., Bayly N.J., Norris D.R., Mackenzie S.A., Rosenberg K. V., Taylor P.D., et al., Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird, Sci. Rep. 2017, 7, 1-11Google Scholar

  • [96] Langin K.M., Reudink M.W., Marra P.P., Norris D.R., Kyser T.K., Ratcliffe L.M., Hydrogen isotopic variation in migratory bird tissues of known origin: implications for geographic assignment, Oecologia 2007, 152, 449-457Google Scholar

  • [97] Nordell C.J., Hache S., Bayne E.M., Solymos P., Foster K.R., Godwin C.M., et al., Within-site variation in feather stable hydrogen isotope (δ2Hf) values of boreal songbirds: Implications for assignment to molt origin, PLoS One 2016, 11, 1-15Google Scholar

  • [98] Hallworth M.T., Studds C.E., Sillett T.S., Marra P.P., Do archival light-level geolocators and stable hydrogen isotopes provide comparable estimates of breeding-ground origin?, Auk 2013, 130, 273-282Google Scholar

  • [99] Gaston K.J., Fuller R.A., Commonness, population depletion and conservation biology, Trends Ecol. Evol. 2008, 23, 14-19Google Scholar

  • [100] Runge C.A., Martin T.G., Possingham H.P., Willis S.G., Fuller R.A., Conserving mobile species, Front. Ecol. Environ. 2014, 12, 395-402CrossrefGoogle Scholar

  • [101] Sherry T.W., Johnson M.D., Strong A.M., Does winter food limit populations of migratory birds?, In: Greenberg, R., Marra, P.P. (Eds.), Birds of Two Worlds: The Ecology and Evolution of Migration, John Hopkins University Press, Baltimore, Maryland, USA, 2005, 414-425Google Scholar

  • [102] Rioux Paquette S., Garant D., Pelletier F., Belisle M., Seasonal patterns in Tree Swallow prey (Diptera) abundance are affected by agricultural intensification, Ecol. Appl. 2013, 123, 122-133Google Scholar

  • [103] Benton T.G., Bryant D.M., Cole L., Crick H.Q.P., Linking agricultural practice to insect and bird populations: a historical study over three decades, J. Appl. Ecol. 2002, 39, 673-687Google Scholar

  • [104] Pisa L.W., Amaral-Rogers V., Belzunces L.P., Bonmatin J.M., Downs C.A., Goulson D., et al., Effects of neonicotinoids and fipronil on non-target invertebrates, Environ. Sci. Pollut. Res. 2015, 22, 68-102Google Scholar

  • [105] Morrissey C.A., Mineau P., Devries J.H., Sanchez-Bayo F., Liess M., Cavallaro M.C., et al., Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review, Environ. Int. 2015, 74, 291-303Google Scholar

About the article

Received: 2018-04-11

Accepted: 2018-08-22

Published Online: 2018-10-23

Published in Print: 2018-10-01


Citation Information: Animal Migration, Volume 5, Issue 1, Pages 1–16, ISSN (Online) 2084-8838, DOI: https://doi.org/10.1515/ami-2018-0001.

Export Citation

© by Tara Leah Imlay et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in