Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

Open Access
Online
ISSN
2084-8838
See all formats and pricing
More options …

Alternate migration strategies of eastern monarch butterflies revealed by stable isotopes

Hannah B. Vander Zanden / Carol L. Chaffee / Antonio González-Rodríguez / D.T. Tyler Flockhart
  • University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Ryan Norris / Marta L. Wayne
Published Online: 2018-12-13 | DOI: https://doi.org/10.1515/ami-2018-0006

Abstract

Alternative life history strategies are mechanisms by which organisms are able to maximize fitness across a range of environmental conditions. Fitness is maximized by different strategies depending on context, resulting in trade-offs between life history strategies. Monarch butterflies (Danaus plexippus) employ both migratory and resident life history strategies. Since residents breed throughout the year, but migrants overwinter in reproductive diapause, there are fitness trade-offs between the two strategies. We used stable isotope analysis to evaluate the geographic origins of monarchs in a yearround population in south Florida. Based on stable isotope profiles of hydrogen and carbon (δ2H and δ13C values), we found that 48% (16/33) of monarchs collected in south Florida are migrants that originated from outside the sampling region. Migrants had a larger wing length than residents; thus, switching to a resident strategy could alter their probability of reproductive success. Further work is needed to investigate the mechanism underlying this pattern, but these findings show that alternate life history strategies and sex-specific behaviors are underexplored factors influencing monarch migration and evolution.

This article offers supplementary material which is provided at the end of the article.

Keywords: Danaus plexippus; connectivity; alternative strategies; hydrogen stable isotopes; carbon stable isotopes

References

  • [1] Grönroos J., Green M., Alerstam T., To fly or not to fly depending on winds: shorebird migration in different seasonal wind regimes, Anim. Behav., 2012, 83, 1449-1457Google Scholar

  • [2] Vande Velde L., Van Dyck H., Lipid economy, flight activity and reproductive behaviour in the speckled wood butterfly: on the energetic cost of territory holding, Oikos, 2013, 122, 555-562Google Scholar

  • [3] Judge K.A., Ting J.J., Gwynne D.T., Condition dependence of male life span and calling effort in a field cricket, Evolution, 2008, 62, 868-878CrossrefGoogle Scholar

  • [4] Leary C.J., Fox D.J., Shepard D.B., Garcia A.M., Body size, age, growth and alternative mating tactics in toads: satellite males are smaller but not younger than calling males, Anim. Behav., 2005, 70, 663-671CrossrefGoogle Scholar

  • [5] Greenfield M.D., Shelly T.E., Alternative mating strategies in a desert grasshopper: evidence of density-dependence, Anim. Behav., 1985, 33, 1192-1210Google Scholar

  • [6] Smith M.D., Schrank H.E., Brockmann H.J., Measuring the costs of alternative reproductive tactics in horseshoe crabs, Limulus polyphemus, Anim. Behav., 2013, 85, 165-173Google Scholar

  • [7] Hews D.K., Knapp R., Moore M.C., Early exposure to androgens affects adult expression of alternative male types in tree lizards, Horm. Behav., 1994, 28, 96-115Google Scholar

  • [8] Páez D.J., Brisson-Bonenfant C., Rossignol O., Guderley H.E., Bernatchez L., Dodson J.J., Alternative developmental pathways and the propensity to migrate: a case study in the Atlantic salmon, J. Evol. Biol., 2011, 24, 245-255Google Scholar

  • [9] Chapman B.B., Brönmark C., Nilsson J.-Å., Hansson L.-A., The ecology and evolution of partial migration, Oikos, 2011, 120, 1764-1775Google Scholar

  • [10] Semmens B.X., Semmens D.J., Thogmartin W.E., Wiederholt R., López-Hoffman L., Diffendorfer J.E., et al., Quasi-extinction risk and population targets for the Eastern, migratory population of monarch butterflies (Danaus plexippus), Sci. Rep., 2016, 6, 23265Google Scholar

  • [11] Flockhart D.T.T., Pichancourt J.-B., Norris D.R., Martin T.G., Unravelling the annual cycle in a migratory animal: breedingseason habitat loss drives population declines of monarch butterflies, J. Anim. Ecol., 2015, 84, 155-165Google Scholar

  • [12] Pleasants J.M., Oberhauser K.S., Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population, Insect Conserv. Divers., 2013, 6, 135-144Google Scholar

  • [13] Pleasants J., Milkweed restoration in the Midwest for monarch butterfly recovery: estimates of milkweeds lost, milkweeds remaining and milkweeds that must be added to increase the monarch population, Insect Conserv. Divers., 2016Google Scholar

  • [14] Inamine H., Ellner S.P., Springer J.P., Agrawal A.A., Linking the continental migratory cycle of the monarch butterfly to understand its population decline, Oikos, 2016, 125, 1081-1091Google Scholar

  • [15] Agrawal A.A., Inamine H., Mechanisms behind the monarch’s decline, Science, 2018, 360, 1294-1296Google Scholar

  • [16] Oberhauser K., Wiederholt R., Diffendorfer J.E., Semmens D., Ries L., Thogmartin W.E., et al., A trans-national monarch butterfly population model and implications for regional conservation priorities, Ecol. Entomol., 2017, 42, 51-60Google Scholar

  • [17] Goehring L., Oberhauser K.S., Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus, Ecol. Entomol., 2002, 27, 674-685Google Scholar

  • [18] Urquhart F.A., Urquhart N.R., Overwintering areas and migratory routes of the monarch butterfly (Danaus p. plexippus, Lepidoptera: Danaidae) in North America, with special reference to the western population, Can. Entomol., 1977, 109, 1583-1589Google Scholar

  • [19] Pyle R.M., Chasing Monarchs: Migrating with the Butterflies of Passage, Houghton Mifflin Co., 1999Google Scholar

  • [20] Dockx C., Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba, Biol. J. Linn. Soc., 2007, 92, 605-616CrossrefGoogle Scholar

  • [21] Knight A., Brower L.P., The influence of Eastern North American autumnal migrant monarch butterflies (Danaus plexippus L.) on continuously breeding resident monarch populations in southern Florida, J. Chem. Ecol., 2009, 35, 816-823Google Scholar

  • [22] Howard E., Aschen H., Davis A.K., Citizen science observations of monarch butterfly overwintering in the southern United States, Psyche J. Entomol., 2010Google Scholar

  • [23] Zalucki M.P., Rochester W.A., Estimating the effect of climate on the distribution and abundance of Danaus plexippus: a tale of two continents, In: Hoth, J., Merino, L., Oberhauser, K.S., Pisanty, I., Price, S., Wilkinson, T. (Eds.), Proceedings of the North American Conference on the Monarch Butterfly, Commission for Environmental Cooperation, Montreal, Canada, 1999, 151-163Google Scholar

  • [24] Zhan S., Zhang W., Niitepõld K., Hsu J., Haeger J.F., Zalucki M.P., et al., The genetics of monarch butterfly migration and warning colouration, Nature, 2014, 514, 317-321Google Scholar

  • [25] Brower L.P., Studies on the migration of the monarch butterfly I. Breeding populations of Danaus plexippus and D. gilippus berenice in south central Florida, Ecology, 1961, 42, 76-83Google Scholar

  • [26] Urquhart F.A., Urquhart N.R., Aberrant autumnal migration of the eastern population of the monarch butterfly, Danaus plexippus plexippus (Lepidoptera: Danaidae) as it relates to the occurrence of strong westerly winds, Can. Entomol., 1979, 111, 1281-1286Google Scholar

  • [27] Knight A., A Population Study of Monarch Butterflies in North- Central and South Florida, Master thesis, : University of Florida, Gainesville, FL, 1998.Google Scholar

  • [28] Dockx C., Migration of the North American Monarch, Danaus plexippus, to Cuba, Dissertation, : University of Florida, Gainesville, FL, 2002.Google Scholar

  • [29] Hobson K.A., Wassenaar L.I. (Eds.), Tracking animal migration with stable isotopes, Elsevier, Amsterdam, 2008Google Scholar

  • [30] Wassenaar L.I., Hobson K.A., Natal origins of migratory monarch butterflies at wintering colonies in Mexico: New isotopic evidence, Proc. Natl. Acad. Sci., 1998, 95, 15436-15439Google Scholar

  • [31] Hobson K.A., Wassenaar L.I., Taylor O.R., Stable isotopes (δD and δ13C) are geographic indicators of natal origins of monarch butterflies in eastern North America, Oecologia, 1999, 120, 397-404Google Scholar

  • [32] Bowen G.J., Statistical and geostatistical mapping of precipitation water isotope ratios, In: West, J.B., Bowen, G.J., Dawson, T.E., Tu, K.P. (Eds.), Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping, Springer, New York, 2010, 139-160Google Scholar

  • [33] Suits N.S., Denning A.S., Berry J.A., Still C.J., Kaduk J., Miller J.B., et al., Simulation of carbon isotope discrimination of the terrestrial biosphere, Glob. Biogeochem. Cycles, 2005, 19Google Scholar

  • [34] Altizer S., Davis A.K., Populations of monarch butterflies with different migratory behaviors show divergence in wing morphology, Evolution, 2010, 64, 1018-1028CrossrefGoogle Scholar

  • [35] Li Y., Pierce A.A., de R.J.C., Variation in forewing size linked to migratory status in monarch butterflies, Anim. Migr., 2016, 3, 27-34Google Scholar

  • [36] Hobson K., Plint T., Serrano E.G., Alvarez X.M., Ramirez I., Longstaffe F., Within-wing isotopic (δ2H, δ13C, δ15N) variation of monarch butterflies: implications for studies of migratory origins and diet, Anim. Migr., 2017, 4, 8-14Google Scholar

  • [37] Wassenaar L.I., Hobson K.A., Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies, Isotopes Environ. Health Stud., 2003, 39, 211-217Google Scholar

  • [38] Bowen G.J., Wassenaar L.I., Hobson K.A., Global application of stable hydrogen and oxygen isotopes to wildlife forensics, Oecologia, 2005, 143, 337-348Google Scholar

  • [39] Flockhart D.T.T., Wassenaar L.I., Martin T.G., Hobson K.A., Wunder M.B., Norris D.R., Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America, Proc. R. Soc. B Biol. Sci., 2013, 280, 20131087Google Scholar

  • [40] Miller N.G., Wassenaar L.I., Hobson K.A., Norris D.R., Monarch butterflies cross the Appalachians from the west to recolonize the east coast of North America, Biol. Lett., 2011, 7, 43-46Google Scholar

  • [41] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2016Google Scholar

  • [42] Flockhart D.T.T., Brower L.P., Ramirez M.I., Hobson K.A., Wassenaar L.I., Altizer S., et al., Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years, Glob. Change Biol., 2017, 23, 2565-2576CrossrefGoogle Scholar

  • [43] Dockx C., Brower L.P., Wassenaar L.I., Hobson K.A., Do North American monarch butterflies travel to Cuba? Stable isotope and chemical tracer techniques, Ecol. Appl., 2004, 14, 1106-1114Google Scholar

  • [44] Dockx C., Differences in phenotypic traits and migratory strategies between eastern North American monarch butterflies, Danaus plexippus (L.), Biol. J. Linn. Soc., 2012, 106, 717-736Google Scholar

  • [45] Lack D., The problem of partial migration, Br. Birds, 1943, 37, 122-130Google Scholar

  • [46] Lundberg P., The evolution of partial migration in Birds, Trends Ecol. Evol., 1988, 3, 172-175CrossrefGoogle Scholar

  • [47] Mysterud A., Loe L.E., Zimmermann B., Bischof R., Veiberg V., Meisingset E., Partial migration in expanding red deer populations at northern latitudes - a role for density dependence?, Oikos, 2011, 120, 1817-1825Google Scholar

  • [48] Chapman B.B., Skov C., Hulthén K., Brodersen J., Nilsson P.A., Hansson L.-A., et al., Partial migration in fishes: definitions, methodologies and taxonomic distribution, J. Fish Biol., 2012, 81, 479-499CrossrefGoogle Scholar

  • [49] Daniels J.C., Seasonal variation in the little sulphur butterfly, Eurema lisa lisa, in central Florida: how it compares to other sympatric Eurema species (Lepidoptera: Pieridae), Holarct. Lepidoptera, 1995, 2, 59-65Google Scholar

  • [50] Ladner D.T., Altizer S., Oviposition preference and larval performance of North American monarch butterflies on four Asclepias species, Entomol. Exp. Appl., 2005, 116, 9-20Google Scholar

  • [51] Atterholt A.L., Solensky M.J., Effects of larval rearing density and food availability on adult size and coloration in monarch butterflies (Lepidoptera: Nymphalidae), J. Entomol. Sci., 2010, 45, 366-377Google Scholar

  • [52] Brower L.P., Fink L.S., Walford P., Fueling the fall migration of the monarch butterfly, Integr. Comp. Biol., 2006, 46, 1123-1142CrossrefGoogle Scholar

  • [53] Flockhart D.T.T., Fitz-gerald B., Brower L.P., Derbyshire R., Altizer S., Hobson K.A., et al., Migration distance as a selective episode for wing morphology in a migratory insect, Mov. Ecol., 2017, 5, 7Google Scholar

  • [54] Yang L.H., Ostrovsky D.M., Rogers M.C., Welker J.M., Intrapopulation variation in the natal origins and wing morphology of overwintering western monarch butterflies (Danaus plexippus), Ecography, 2015, 39, 998-1007Google Scholar

  • [55] Davis A.K., Cope N., Smith A., Solensky M.J., Wing color predicts future mating success in male monarch butterflies, Ann. Entomol. Soc. Am., 2007, 100, 339-344CrossrefGoogle Scholar

  • [56] Van Hook T., Monarch butterfly mating ecology at a Mexican overwintering site : proximate causes of non-random mating, Dissertation, University of Florida, Gainesville, FL, 1996.Google Scholar

  • [57] Alonso-Mejía A., Rendon-Salinas E., Montesinos-Patiño E., Brower L.P., Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for conservation, Ecol. Appl., 1997, 7, 934-947Google Scholar

  • [58] Oberhauser K.S., Male monarch butterfly spermatophore mass and mating strategies, Anim. Behav., 1988, 36, 1384-1388CrossrefGoogle Scholar

  • [59] Oberhauser K.S., Effects of spermatophores on male and female monarch butterfly reproductive success, Behav. Ecol. Sociobiol., 1989, 25, 237-246CrossrefGoogle Scholar

  • [60] Altizer S.M., Oberhauser K.S., Brower L.P., Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies, Ecol. Entomol., 2000, 25, 125-139Google Scholar

  • [61] McLaughlin R.E., Myers J., Ophryocystis elektroscirrha sp. n., a neogregarine pathogen of the monarch butterfly Danaus plexippus (L.) and the Florida queen butterfly D. gilippus berenice Cramer, J. Protozool., 1970, 17, 300-305CrossrefGoogle Scholar

  • [62] Leong K.L.H., Yoshimura M.A., Kaya H.K., Williams H., Instar susceptibility of the monarch butterfly (Danaus plexippus) to the neogregarine parasite, Ophryocystis elektroscirrha, J. Invertebr. Pathol., 1997, 69, 79-83Google Scholar

  • [63] Altizer S.M., Oberhauser K.S., Geurts K.A., Transmission of the protozoan parasite, Ophryocystis elektroscirrha, in monarch butterfly populations: implications for prevalence and population-level impacts, In: Oberhauser, K.S., Solensky, M. (Eds.), The Monarch Butterfly: Biology and Conservation, Cornell University Press, Ithaca, NY, 2004, 203-218Google Scholar

  • [64] Altizer S.M., Oberhauser K.S., Effects of the protozoan parasite Ophryocystis elektroscirrha on the fitness of monarch butterflies (Danaus plexippus), J. Invertebr. Pathol., 1999, 74, 76-88Google Scholar

  • [65] Mongue A.J., Tsai M.V., Wayne M.L., Roode J.C. de, Inbreeding depression in monarch butterflies, J. Insect Conserv., 2016, 20, 477-483CrossrefGoogle Scholar

  • [66] Altizer S., Bartel R., Han B.A., Animal migration and infectious disease risk, Science, 2011, 331, 296-302Google Scholar

  • [67] Flockhart D.T.T., Dabydeen A., Satterfield D.A., Hobson K.A., Wassenaar L.I., Norris D.R., Patterns of parasitism in monarch butterflies during the breeding season in eastern North America, Ecol. Entomol., 2018, 43, 28-36Google Scholar

  • [68] Bartel R.A., Oberhauser K.S., Roode J.C. de, Altizer S.M., Monarch butterfly migration and parasite transmission in eastern North America, Ecology, 2011, 92, 342-351CrossrefGoogle Scholar

  • [69] Satterfield D.A., Maerz J.C., Altizer S., Loss of migratory behaviour increases infection risk for a butterfly host, Proc. R. Soc. Lond. B Biol. Sci., 2015, 282, 20141734Google Scholar

  • [70] Monarch Watch: Dedicated to Education, Conservation & Research. Monarch Watch, 2016Google Scholar

  • [71] Howard E., Davis A.K., Documenting the spring movements of monarch butterflies with Journey North, a citizen science program, In: Oberhauser, K.S., Solensky, M.J. (Eds.), The Monarch Butterfly: Biology & Conservation, Cornell University Press, Ithaca, NY, 2004, 105-114Google Scholar

  • [72] Lyons J.I., Pierce A.A., Barribeau S.M., Sternberg E.D., Mongue A.J., De Roode J.C., Lack of genetic differentiation between monarch butterflies with divergent migration destinations, Mol. Ecol., 2012, 21, 3433-3444CrossrefGoogle Scholar

  • [73] Taborsky M., Brockmann H.J., Alternative reproductive tactics and life history phenotypes, In: Kappeler, P. (Ed.), Animal Behaviour: Evolution and Mechanisms, Springer Verlag, Berlin, 2010, 537-586.Google Scholar

About the article

Received: 2018-06-08

Accepted: 2018-10-30

Published Online: 2018-12-13

Published in Print: 2018-12-01


Citation Information: Animal Migration, Volume 5, Issue 1, Pages 74–83, ISSN (Online) 2084-8838, DOI: https://doi.org/10.1515/ami-2018-0006.

Export Citation

© by Hannah B. Vander Zanden, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in