Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
See all formats and pricing
More options …

Magnetic Properties of Co-Fe Nanowires Electrodeposited in Pores of Alumina Membrane

I. Dobosz
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ W. Gumowska
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Czapkiewicz
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-17 | DOI: https://doi.org/10.2478/amm-2013-0052


The nanowires of Co66-Fe34 alloy were obtained in the process of the electrodeposition in the pores of alumina membrane. With the use of the X-ray diffraction analysis the structure of cobalt-iron alloy wires was determined. The wires have the regular Body Centred Cubic structure (BCC). The influence of membrane parameters, an external magnetic field, and the annealing temperature on the magnetic properties of alloy wires was investigated. The obtained nanowires show a high shape anisotropy in the direction perpendicular to the membrane surface of anodic alumina. It was found that the highest influence on the magnetic properties of the wires has their geometry (height, diameter, and the distance between them). The use of an external magnetic field directed perpendicular to the sample surface during the electrodeposition process and additional thermal treatment (annealing) causes a slight increase of the coercive field, remanence, and volume energy density.


Nanodruty stopu Co66Fe34 uzyskano w procesie elektroosadzania w porach membrany tlenku glinu. Przy pomocy dyfrakcyjnej analizy rentgenowskiej okreslono strukture drutów stopu kobalt -zelazo. Druty wykazuja strukture regularna przestrzennie centrowana (RPC) (ang. BCC). Zbadano wpływ parametrów membrany, zewnetrznego pola magnetycznego oraz temperatury wyzarzania na własnosci magnetyczne drutów stopowych. Uzyskane nanodruty wykazuja wysoka anizotropie kształtu w kierunku prostopadłym do powierzchni membrany anodowego tlenku glinu. Stwierdzono, ze najwiekszy wpływ na własnosci magnetyczne ma geometria drutów (wysokosc, srednica oraz odległosci miedzy nimi). Zastosowanie zewnetrznego pola magnetycznego w kierunku prostopadłym do powierzchni próbki podczas procesu elektroosadzania oraz dodatkowej obróbki termicznej (wyzarzania) powoduje niewielki wzrost pola koercji, remanencji oraz gestosci objetosciowej energii.

Keywords: Anodic alumina membrane; hysteresis loop; cobalt-iron alloy; nanowires

  • [1] D.J. Sellmyer, H. Zeng, M. Yan, S. Sun, Y. Liu, Handbook of Advanced Magnetic Materials. IV: Properties and Application, 2006.Google Scholar

  • [2] D. Sellmyer, M. Zheng, R. Skomskli, Magnetism of Fe, Co and Ni nanowires in self- assembled arrays, Journal of Physics: Condensed Matter 13, R433 (2001).Web of ScienceGoogle Scholar

  • [3] M. Hernández -Vélez, Nanowires and 1D arrays fabrication: An overview, Thin Solid Films 495, 51 (2006).Google Scholar

  • [4] P.D. Mc Gary, L. Tan, J. Zou, B.J.H. Stadler, Magnetic nanowires for acoustic sensors, Journal of Applied Physics 99, 08B310 (2006).Google Scholar

  • [5] M. Yun, N.V. Myung, R.P. Vasquez, J. Wang, H. Monbouquette, Nanowire growth for sensor arrays, Proceedings of the SPIE 5220, 37 (2003).Google Scholar

  • [6] Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science 291, 85, 1 (2001).Google Scholar

  • [7] A. Sugawara, D. Streblechenko, M. Mc - Cartney, M.R. Scheinfein, Magnetic coupling in self-organized narrow-spaced Fe nanowire arrays, IEEE Transactions on Magnetics 34, 1081 (1998).Google Scholar

  • [8] D. Routkevitch, A.A. Tager, J. Haruyama, Diyaa Almawlawi, M. Moskovits, J.M. Xu, Nonlithographic nano-wire arrays: fabrication, physics and device applications, IEEE Transaction on Magnetism 43, 1646 (1996).Google Scholar

  • [9] J. Wang, X. Zhou, Q. Liu, D. Xue, F.S. Li, B. Li, Magnetic texture in iron nanowire arrays, Nanotechnology 15, 485 (2004).Google Scholar

  • [10] J.A. Koza, S. Mühlenhoff, M. Uhlemann, K. Eckert, A. Gebert, L. Schultz, Desorption of hydrogen from an electrode surface under influence of an external magnetic field - In-situ microscopic observations, Electrochemistry Communications 11, 425 (2009).Web of ScienceGoogle Scholar

  • [11] A. Krause, M. Uhlemann, A. Gebert, L. Schultz, The effect of magnetic fields on the e-lectrodeposition of Co and Cu, Electrochimica Acta 49, 4127 (2004).Web of ScienceGoogle Scholar

  • [12] H. Matsushima, Y. Fukunaka, H. Yasuda, S. Kikuchi, Phenomenological discussion of Fe and Co film electrodeposited in a magnetic field, ISIJ International 45, 1001 (2005).Google Scholar

  • [13] I. Dobosz, Elektrochemiczne metody otrzymywania kompozytów tlenek aluminium - metal (stop) o własnosciach magnetycznych. PhD thesis, AGH, Kraków 2011.Google Scholar

  • [14] A. Ispas, H. Matsushima, W. Plieth, A. Bund, Influence of a magnetic field on the ele-ctrodeposition of nickel - iron alloys, Electrochimica Acta 52, 2785 (2007).Web of ScienceGoogle Scholar

  • [15] H. Matsushima, A. Ispas, A. Bund, B. Bozzim, Magnetic field effects on the initial sta- ges of electrodeposition processes, Journal Electroanalytical Chemistry 615, 191 (2008).Google Scholar

  • [16] A. Ispas, A. Bund, Influence of a magnetic field on the electrodeposition of nickel and nickel-iron alloys, in The 15th Riga and 6th PAMIR Conference on Fundamental and Applied MHD, 135-138 (2011).Google Scholar

  • [17] M. Ebadi, W.J. Basirun, Y. Alias, Influence of magnetic field on the electrodeposition of Ni-Co alloy, Journal of Chemical Society 122, 279 (2010).Google Scholar

  • [18] P. Fricoteaux, C. Rousse, Influence of substrate, pH and magnetic field onto compo- sition and current efficiency of electrodeposited Ni-Fe alloys, Journal of Electroana-lytical Chemistry 612, 9 (2008).Web of ScienceGoogle Scholar

  • [19] A. Ispas, H. Matsushima, A. Bund, B. Bozzini, A study of external magnetic-field effects on nickel-iron alloy electrodeposition, based on linear and non-linear differential AC electrochemical response measurements, Journal of Electroanalytical Chemistry 651, 197 (2011).Web of ScienceGoogle Scholar

  • [20] A. Ispas, H. Matsushima, A. Bund, B. Bozzini, Nucleation and growth of thin nickel layers under the influence of a magnetic field, Journal of Electroanalytical Chemistry 626, 174 (2009).Google Scholar

  • [21] J. Sánchez- Barriga, M. Lucas, G. Rivero, P. Marin, A. Hernando, Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane, Journal of Magnetism and Magnetic Materials 312, 99 (2007).Web of ScienceGoogle Scholar

  • [22] H.R. Khan, K. Petrikowski, Synthesis and properties of the arrays of magnetic nano- wires of Co and CoFe, Materials Science and Engineering C 19, 345 (2002).Google Scholar

  • [23] W. Gumowska, I. Dobosz, M. Uhlemann, J.A. Koza, Al2O3 - Co and Al2O3 - Fe composites obtained by the electrochemical method, Archives of Metallurgy and Materials 54, 1119 (2009).Google Scholar

  • [24] I. Dobosz, W. Gumowska, M. Uhlemann, J.A. Koza, Al2O3 -Co and Al2O3 -Fe composites obtained by the electrochemical method.Part II. Magnetic properties of Co and Fe nano-wires, Archives of Metallurgy and Materials 55, 684 (2010).Google Scholar

  • [25] A. Kumar, S. Fähler, H. Schlörb, K. Leistner, L. Schultz, Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates, Physical Reviev B 73, 064421 (2006).Google Scholar

  • [26] T.G. Sorop, K. Nielsch, P. Göring, M. Kröll, W. Blau, R.B. Wehrspohn, U. Gösele, L.J.D. Jongh, Study of the magnetic hysteresis in arrays of ferromagnetic Fe nanowires as a function of the template filling fraction, Journal of Magnetism and Magnetic Materials 272 -276, 1656 (2004).Google Scholar

  • [27] P.S. Fodor, G.M. Tsoi, L.E. Wenger, Fabrication and characterization of CoxFex alloy nanowires, Journal of Applied Physics 91, 8186 (2002).Google Scholar

  • [28] A. Jagminas, K. Mažeika, J. Reklaitis, D. Baltrūnas, V. Pekstas, Annealing effects on the transformations of Fe nanowires encapsulated in the alumina template pores, Materials Chemical Physics 115, 217 (2009).Web of ScienceGoogle Scholar

  • [29] K. Mažeika, J. Reklaitis, Arunas Jagminas, D. Baltrūna s, Studies of oxidation of iron nanowires encased in porous aluminium oxide template, Hyperfine Interact 189, 137 (2009). Google Scholar

About the article

Published Online: 2013-09-17

Published in Print: 2013-09-01

Citation Information: Archives of Metallurgy and Materials, Volume 58, Issue 3, Pages 663–671, ISSN (Print) 1733-3490, DOI: https://doi.org/10.2478/amm-2013-0052.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A. Kozlovskiy, A. Zhanbotin, M. Zdorovets, I. Manakova, A. Ozernoy, T. Kiseleva, K. Kadyrzhanov, V. Rusakov, and E. Kanyukov
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, Volume 381, Page 103

Comments (0)

Please log in or register to comment.
Log in