Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
Online
ISSN
2300-1909
See all formats and pricing
More options …

The Deposition of Gold Nanoparticles Onto Activated Carbon

Osadzanie nanocząstek złota na węglu aktywnym

W. Jaworski
  • Agh University Of Science And Technology, Faculty Of Non-Ferrous Metals, Al. A. Mickiewicza 30, 30-059 KrakóW, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B. Streszewski
  • Agh University Of Science And Technology, Faculty Of Non-Ferrous Metals, Al. A. Mickiewicza 30, 30-059 KrakóW, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Szaciłowski
  • Agh University Of Science And Technology, Faculty Of Non-Ferrous Metals, Al. A. Mickiewicza 30, 30-059 KrakóW, Poland
  • Jagiellonian University, Faculty Of Chemistry, 3 Ingardena Str., 30-060 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Pacławski
  • Agh University Of Science And Technology, Faculty Of Non-Ferrous Metals, Al. A. Mickiewicza 30, 30-059 KrakóW, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-28 | DOI: https://doi.org/10.2478/amm-2014-0152

Abstract

This work reports the results of spectrophotometric, dynamic light scattering (DLS) and microscopic (SEM) studies of the gold nanoparticles (AuNPs) deposition on activated carbon (AC) surface modified with primary (ethanolamine) and secondary (diethylenetriamine and triethylenetetramine) amines. It was found that this method is efficient for deposition of AuNPs from aqueous solution. However, nanoparticles change their morphology depending on the kind of amine used in experiments. On the AC surface modified with ethanolamine, the uniform spherical AuNPs were formed. In case of diethylenetriamine and triethylenetetramine application, the agglomerates of AuNPs are present. The diameter of individual AuNPs did not exceed 15 nm and was bigger as compared with the diameter of particles present in precursor solution (ca. 10 nm).

W pracy przedstawiono wyniki badań spektrofotometrycznych, metodą dynamicznego rozpraszania światła (DLS) oraz mikroskopowe (SEM) dotyczące osadzania nanocząstek złota na węglu aktywnym, modyfikowanym aminami: pierwszorzędową (etanoloamina) i drugorzędowymi (dietylenotriamina i trietylenotetraamina). Wykazano, że ten sposób modyfikacji umożliwia osadzanie nanocząstek złota z roztworu wodnego na powierzchni węgla. W zależności od rodzaju używanej aminy ulega jednak zmianie morfologia osadów nanocząstek. Na powierzchni węgla aktywnego, modyfikowanego etanoloaminą, tworzą się jednorodne cząstki złota o kształcie sferycznym. W przypadku zastosowania dietylenotriaminy oraz trietylenotetraaminy obserwowano powstawanie agregatów nanocząstek. Średnica pojedynczych nanocząstek nie przekraczała 15 nm i była większa od średnicy nanocząstek obecnych w roztworze prekursora (ok. 10 nm).

Keywords: Gold nanoparticles; Activated carbon; Functionalization; Amines

References

  • [1] L.N. Lewis, Chem. Rev. 93, 2693 (1993).Google Scholar

  • [2] A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102, 3757 (2002).Google Scholar

  • [3] B. Min, C.M. Friend, Chem. Rev. 107, 2709 (2007).Google Scholar

  • [4] A. Arcadi, Chem. Rev. 108, 3266 (2008).Google Scholar

  • [5] P. Serp, J.L. Figueiredo (Eds.), Carbon Materials for Catalysis, 1st Edition, John Wiley and Sons, Inc., Hoboken, New Jersey, 2009.Google Scholar

  • [6] M. Kralik, A. Biffis, J. Mol. Catal. 177, 113 (2001).Google Scholar

  • [7] T. Risse, S. Shaikhutdinov, N. Nilius, M. Sterrer, H.J. Freund, Acc. Chem. Res. 41, 949 (2008).Google Scholar

  • [8] M. Chen, D.W. Goodman, Chem. Soc. Rev. 37, 1860 (2008).Google Scholar

  • [9] Z. Ma, S. Dai, Nano Research 4, 3 (2011).Google Scholar

  • [10] C.L. Bianchi, S. Biella, A. Gervasini, L. Prati, M. Rossi, Catal. Lett. 85, 91 (2003).Google Scholar

  • [11] L. Gutierrez, S. Hamoudi, K. Belkacemi, Catal. 1, 97 (2011).Google Scholar

  • [12] L. Prati, R. Rossi, J. Catal. 176, 552 (1998).Google Scholar

  • [13] M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998).Google Scholar

  • [14] K. Pacławski, M. Wojnicki, Arch. Metall. Mat. 54, 853 (2009).Google Scholar

  • [15] P. Riello, P. Canton, A. Benedetti, Langmuir 14, 6617 (1998).Google Scholar

  • [16] L. Prati, G. Martra, Gold Bull. 32, 96 (1999).Google Scholar

  • [17] D. Bulushev, I. Yuranov, E.I. Suvorova, P.S. Buffat, L. Kiwi-Minsker, J. Catal. 224, 8 (2004).Google Scholar

  • [18] A.J. Downard, E.S.Q. Tan, S.S.C. Yu, New J. Chem. 30, 1283 (2006).Google Scholar

  • [19] A.C. Cruickshank, A.J. Downard, Electrochim. Acta. 54, 5566 (2009).Google Scholar

  • [20] http://www.desotec.pl/Google Scholar

  • [21] S. Goyanes, G. Rubiolo, A. Salazar, A. Jimeno, M. Corcuera, I. Mondragon, Diamond Relat. Mater. 16, 412 (2007).Google Scholar

  • [22] F. Chen, X. Li, J. Hihath, Z. Huang, N. Tao, J. Am. Chem. Soc. 128, 15874 (2006).Google Scholar

  • [23] G. Fagas, J.C. Greer, Nanotechnology 18, 424010 (2007).PubMedGoogle Scholar

  • [24] A. Kumar, S. Mandal, P.R. Selvakannan, R. Pasricha, A.B. Mandale, M. Sastry, Langmuir 19, 6277 (2003).Google Scholar

About the article

Received: 2014-01-10

Published Online: 2014-10-28


Citation Information: Archives of Metallurgy and Materials, ISSN (Online) 2300-1909, DOI: https://doi.org/10.2478/amm-2014-0152.

Export Citation

© 2014 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in