Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
See all formats and pricing
More options …

The Dilatometric Analysis of the High Carbon Alloys from Ni-Ta-Al-M System

Badania dylatometryczne wysokowęglowych stopów z układu Ni-Ta-Al-M

P. Bała
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-28 | DOI: https://doi.org/10.2478/amm-2014-0164


In the following work presents results of high carbon alloys from the Ni-Ta-Al-M system are presented. The alloys have been designed to have a good tribological properties at elevated temperatures. Despite availability of numerous hot work tool materials there is still a growing need for new alloys showing unique properties, which could be used under heavy duty conditions, i.e. at high temperatures, in a chemically aggressive environment and under heavy wear conditions. A characteristic, coarse-grained dendritic microstructure occurs in the investigated alloys in the as-cast condition. Primary dendrites with secondary branches can be observed. Tantalum carbides of MC type and graphite precipitations are distributed in interdendritic spaces in the Ni-Ta-Al-C and Ni-Ta-Al-C-Co alloys, while Tantalum carbides of MC type and Chromium carbides of M7C3 type appeared in the Ni-Ta-Al-C-Co-Cr and Ni-Ta-Al-C-Cr alloys. In all alloys g’ phase is present, however, its volume fraction in the Ni-Ta-Al-C and Ni-Ta-Al-C-Co alloys is small.

During heating from as-cast state in Ni-Ta-Al-C and Ni-Ta-Al-C-Co alloys, the beginning of the tantalum carbides precipitation process (MC type) followed (or simultaneous) by the intermetallic phase precipitation (g’ – Ni3(AlTa)) was stated, while in Ni-Ta-Al-C-Co-Cr and Ni-Ta-Al-C-Cr alloys, besides Tantalum carbides also the Chromium carbides precipitation occurred. It means that the investigated alloys were partially supersaturated in as-cast state. Above 1050°C in all investigated alloys the g’ phase is dissolving. In addition, the precipitation of secondary carbides during slow cooling was occured.

W pracy przedstawiono wyniki badań nowych stopów z układu Ni-Ta-Al-M o dużym stężeniu węgla. Stopy te zostały zaprojektowane do pracy w wysokiej temperaturze i w warunkach silnego zużycia tribologicznego. Pomimo, że istnieje wiele materiałów narzędziowych do pracy na gorąco wciąż istnieje silna potrzeba poszukiwania nowych materiałów o unikatowych własnościach, które mogłyby pracować w bardzo trudnych warunkach, tj. wysokiej temperaturze, agresywnym chemicznie środowisku i w warunkach silnego zużycia tribologicznego.

W stanie po odlaniu badane stopy cechują się charakterystyczną budową dendrytyczną. Widoczne są pierwszo i drugorzędowe dendryty. W stopach Ni-Ta-Al-C i Ni-Ta-Al-C-Co w obszarach międzydendrytycznych rozmieszczone są węgliki tantalu typu MC oraz grafit, natomiast w stopach Ni-Ta-Al-C-Co-Cr i Ni-Ta-Al-C-Cr węgliki tantalu typu MC oraz węgliki chromu typu Cr7C3. We wszystkich stopach występuje faza g’, choć jej udział objętościowy w stopach Ni-Ta-Al-C i Ni-Ta-Al-C-Co jest nieduży.

Podczas nagrzewania ze stanu lanego w stopach Ni-Ta-Al-C i Ni-Ta-Al-C-Co stwierdzono wydzielanie węglików wtórnych tantalu typu MC z następnym (lub równoczesnym) wydzielaniem fazy (g’ – Ni3(AlTa)). Natomiast w stopach Ni-Ta-Al-C-Co-Cr i Ni-Ta-Al-C-Cr oprócz węglików wtórnych tantalu wydzielają się węgliki wtórne chromu. Oznacza to, że badane stopy w stanie po odlaniu były w stanie częściowego przesycenia. Powyżej 1050°C we wszystkich badanych stopach rozpuszczają się wydzielenia fazy g’. Wtórne wydzielanie węglików stwierdzono również podczas wolnego chłodzenia od temperatury 1200°C.

Keywords: Ni-based alloys; phase transformation; dilatometric analysis; gamma prime phase; carbides


  • [1] A.K. Sinha, Physical metallurgy handbook, The McGraw-Hill Companies, Inc., 2003.Google Scholar

  • [2] J. Krawczyk, P. Bała, J. Pacyna, The effect of carbide precipitate morphology on fracture toughness on low-tempered steels containingNi, Journal of Microscopy 237, 411-415 (2010).Google Scholar

  • [3] M. Madej, Copper infiltrated high speed steel based composites with iron additions. Arch Metall Mater 54, 1083-1091 (2009).Google Scholar

  • [4] R.W.K. Honeycombe, H.K.D.H. Bhadeshia, Steels. Microstructure and properties, 2nded. London: Edward Arnold, 1995.Google Scholar

  • [5] P. Bała, The kinetics of phase transformations during tempering of tool steels with different carbon content, Arch Metall Mater 54, 491-498 (2009).Google Scholar

  • [6] J.R. Davies, Metallurgy, Processing and Properties of Su-peralloys, ASM Speciality Handbook: Heat Resistant Materials, ASM International, 1997.Google Scholar

  • [7] M.J. Donachie, S.J. Donachie, Superalloys. A technical guide, ASM International, Materials ParkOH, second edition, 2008.Google Scholar

  • [8] M. Durand-Charre, The microstructure of superalloys, CRC Press, 1997.Google Scholar

  • [9] Y. Birol, Thermal fatigue testing of Inconel 617 and Stellite 6 alloys as potential tooling materials for thixoforming of steels, Mat Sci Eng A 527, 1938-1945 (2010).Web of ScienceGoogle Scholar

  • [10] C. Stöcker, M. Zimmermanna, H.-J. Christ, Z.-L. Zhanb, C. Cornet, L.G. Zhao, M.C. Hardy, J. Tong, Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep-fatigue loading conditions, Mat Sci Eng A 518, 27-34 (2009).Web of ScienceGoogle Scholar

  • [11] M. Koori, M. Morishita, K. Yoshikawa, O. Tsuda, Nickel-based heat-resistant alloy for dies. European Patent Application EP0460678.Google Scholar

  • [12] P. Bała, Microstructural characterization of the new tool Ni-based alloy with high carbon and chromium content, Arch Metall Mater 55, 1053-1059 (2010).Web of ScienceGoogle Scholar

  • [13] P. Bała, Microstructure characterization of high carbon alloy from the Ni-Ta-Al-Co-Cr system, Arch Metall Mater 57, 937-941 (2012).Google Scholar

  • [14] K. Ziewiec, Z. Kędzierski, The microstructure development in Fe32Cu20Ni28P10Si5B5 immiscible alloy and possibilities of formation of amorphous/crystalline composite, J. Alloys Compd. 480, 306-310 (2009).Google Scholar

  • [15] T. Kozieł, Z. Kędzierski, A. Zielińska-Lipiec, J. Latuch, G. Cieslak, TEM studies of melt-spun alloys with liquid miscibility gap, J. Microsc. 237, 267-270 (2010).Google Scholar

  • [16] B. Dousti, R. Mojaver, H.R. Shahverdi, R.S. Mamoory, Microstructural evolution and chemical redistribution in Fe-Cr-W-Ti-Y2O3 nanostructured powders prepared by ball milling, J. Alloys Compd. 577, 409-416 (2013).Google Scholar

About the article

Received: 2014-01-10

Published Online: 2014-10-28

Citation Information: Archives of Metallurgy and Materials, ISSN (Online) 2300-1909, DOI: https://doi.org/10.2478/amm-2014-0164.

Export Citation

© 2014 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

K. Wieczerzak, M. Watroba, W. Bednarczyk, M. Madej, M. Marzec, T. Tokarski, and P. Bala
Materials Characterization, 2017, Volume 129, Page 367
K. Wieczerzak, P. Bala, M. Stepien, and G. Cios
Surface and Coatings Technology, 2015, Volume 280, Page 110

Comments (0)

Please log in or register to comment.
Log in