Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
Online
ISSN
2300-1909
See all formats and pricing
More options …

Hydrogen Sensor Of TiO2-Based Nanomaterials

SENSOR WODORU NA BAZIE NANOMATERIAŁÓW TiO2

B. Łysoń-Sypień
  • Corresponding author
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF COMPUTER SCIENCE, ELECTRONICS AND TELECOMMUNICATIONS, AL. A. MICKIEWICZA 30, 30-059 KRAKÓW, POLAND
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Zakrzewska
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF COMPUTER SCIENCE, ELECTRONICS AND TELECOMMUNICATIONS, AL. A. MICKIEWICZA 30, 30-059 KRAKÓW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Gajewska
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, ACADEMIC CENTER OF MATERIALS AND NANOTECHNOLOGY, ACMIN, AL. A. MICKIEWICZA 30, 30-059 KRAKÓW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Radecka
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF MATERIALS SCIENCE AND CERAMICS, AL. A. MICKIEWICZA 30, 30-059 KRAKÓW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-03 | DOI: https://doi.org/10.1515/amm-2015-0233

Abstract

The aim of this research was to examine gas sensing properties of TiO2 based nanomaterials. Nanopowders of Cr doped TiO2 with constant Specific Surface Area, SSA, were obtained using Flame Spray Synthesis technique, FSS. Nanomaterials were characterized by Brunauer – Emmett – Teller adsorption isotherms, BET, X – ray diffraction, XRD, Transmission Electron Microscopy, TEM, optical spectrometry UV – vis with the use of an integrating sphere as well as impedance spectroscopy. Detection of hydrogen was carried out over the concentration range of 50 - 3000 ppm at the temperatures extending from 200 to 400°C and synthetic air working as a reference atmosphere. As a result of experiments it appeared that incorporation of 5 at.% of Cr into TiO2 improved hydrogen sensing features due to small crystallite size and predominance of rutile polymorphic phase.

Przedmiotem pracy są nanomateriały na bazie TiO2 do zastosowań sensorowych. Nanoproszki TiO2 domieszkowane chromem o stałej powierzchni właściwej SSA (ang. Specific Surface Area) otrzymano przy pomocy techniki syntezy w płomieniu FSS (ang. Flame Spray Synthesis). Materiały poddano charakteryzacji z wykorzystaniem: izoterm adsorpcyjnych Brunauer – Emmett – Teller, BET, dyfraktometrii rentgenowskiej, XRD, transmisyjnej mikroskopii elektronowej, TEM, spektroskopii optycznej UV – vis oraz spektroskopii impedancyjnej. Pomiar własności sensorowych został przeprowadzony dla koncentracji H2 w zakresie 50-3000 ppm w przedziale temperatur 200-400°C. Wykazano, że najlepiej na wodór odpowiada próbka TiO2: 5 at.% Cr charakteryzująca się małym rozmiarem krystalitów oraz przewagą fazy rutylu.

Keywords: TiO2 nanomaterials; Cr dopant; hydrogen sensor

REFERENCES

  • [1] G. Pfaff, P. Reynders, Chem. Rev. 99, 1963 (1999).Google Scholar

  • [2] J. Winkler, Titanium Dioxide, Vincentz, Hannover, 2003.Google Scholar

  • [3] A. Bozzi, T. Yuranova, I. Guasaquillo, D. Laub, J. Kiwi, J. Photochem. Photobiol. A 174, 156 (2005).Google Scholar

  • [4] D.A. Tryk, T. Watanabe, K. Hashimoto, A. Fujishima, Internat. Glass Rev. 2, 34 (2001).Google Scholar

  • [5] D. Alrousana, M.I. Polo-Lopez, P.S.M. Dunlop, P. Fernandez-Ibanez, J.A. Byrne, Appl. Catal. B 128, 126 (2012).Google Scholar

  • [6] A. García, L. Delgado, J. A. Torŕ, E. Casals, E. González, V. Puntesb, X. Font, J. Carrera, A. Sánchez, J. Hazard. Mater. 199-200, 64 (2012).Google Scholar

  • [7] A.D. Barros, K.F. Albertin, J. Miyoshi, I. Doi, J.A. Diniz, Microelectron. Eng. 87, 443 (2010).Google Scholar

  • [8] T. Bansal, C.A. Durcan, N. Jain, R.B. Jacobs-Gedrim, Y. Xu, B. Yu, Carbon 55, 168 (2013).Google Scholar

  • [9] Q. Chaudhry, L. Castle, Trends Food Sci. Technol. 22, 595 (2011).CrossrefGoogle Scholar

  • [10] K. Siwińska-Stefańska, M. Nowacka, A. Kołodziejczak-Radzimska, T. Jesionowski, Dyes and Pigments 94, 338 (2012).CrossrefGoogle Scholar

  • [11] H. Wang, H. Li, J. Wang, J. Wu, Mater. Lett. 80, 99 (2012).Google Scholar

  • [12] E. Le Boulbar, E. Millon, E. Ntsoenzok, B. Hakim, W. Seiler, C. Boulmer-Leborgne, J. Perriere, Opt. Mater. 34, 1419 (2012).Google Scholar

  • [13] M. Ilie, B. Cojocaru, V.I. Parvulescu, H. Garcia, Int. J. Hydrogen Energy 36, 15509 (2011).Google Scholar

  • [14] R. Xiong, G. Sang, X. Yan, G. Zhang, X. Ye, C. Jiang, L. Luo, Int. J. Hydrogen Energy 37, 10222 (2012).Google Scholar

  • [15] S. Songara, M.K. Patra, M. Manoth, L. Saini, V. Gupta, G.S. Gowd, S.R. Vadera, N. Kumar, J. Photochem. Photobiol. A 209, 68 (2010).Google Scholar

  • [16] A.Z. Sadek, J.G. Partridge, D.G. McCulloch, Y. X. Li, X. F. Yu, W. Wlodarski, K. Kalantar-zadeh, Thin Solid Films 518, 1294 (2009).Google Scholar

  • [17] Y. Kimura, S. Kimura, R. Kojima, M. Bitoh, M. Abe, M. Niwano, Sens. Actuators B 177, 1156 (2013).Google Scholar

  • [18] H. Jamil, S.S. Batool, Z. Imran, M. Usman, M.A. Rafiq, M. Willander, M.M. Hassan, Ceram. Int. 38, 2437 (2012).Google Scholar

  • [19] G. Neri, A. Bonavita, S. Galvagno, Y. X. Li, K. Galatsis, W. Wlodarski, IEEE Sens. J. 3, 195 (2003).CrossrefGoogle Scholar

  • [20] M. Ferroni, M.C. Carotta, V. Guidi, G. Martinelli, F. Ronconi, O. Richard, D.V. Dyck, J.V. Landuyt, Sens. Actuators B 68, 140 (2000).Google Scholar

  • [21] R.K. Sharma, M.C. Bhatnagar, G.L. Sharma, Sens. Actuators B 45, 209 (1997).Google Scholar

  • [22] K. Zakrzewska, M. Radecka, M. Rekas, Thin Solid Films 310, 161 (1997).Google Scholar

  • [23] A. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. Morante, N. Yamazoe, Sens. Actuators B 93, 509 (2003).Google Scholar

  • [24] M. Radecka, M. Rekas, Solid State Phenom. 39-40, 135 (1994).CrossrefGoogle Scholar

  • [25] S. Karvinen, Solid State Sci. 5, 811 (2003).CrossrefGoogle Scholar

  • [26] C.C. Tsai, H. Teng, Appl. Surf. Sci. 254, 4912 (2008).Google Scholar

  • [27] D.A. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011).CrossrefGoogle Scholar

  • [28] M. Radecka, K. Zakrzewska, M. Wierzbicka, A. Gorzkowska, S. Komornicki, Solid State Ionics 157, 379 (2003).Google Scholar

  • [29] K. Wilke, H.D. Breuer, J. Photochem. Photob. A 121, 49 (1999).Google Scholar

  • [30] J.L. Carpentier, A. Lebrun, F. Perdu, J. Phys. Chem. Solids 50, 145 (1989).CrossrefGoogle Scholar

  • [31] T.H. Jun, K.S. Lee, Mater. Lett. 64, 2287 (2010).CrossrefGoogle Scholar

  • [32] I. Alessandri, E. Comini, E. Bontempi, G. Faglia, L.E. Depero, G. Sberveglieri, Sens. Actuators B 128, 312 (2007).Google Scholar

  • [33] B. Lyson-Sypien, A. Czapla, M. Lubecka, P. Gwizdz, K. Schneider, K. Zakrzewska, K. Michalow, T. Graule, A. Reszka, M. Rekas, A. Lacz, M. Radecka, Sens. Actuators B 175, 163 (2012).Google Scholar

  • [34] B.D. Cullity, Elements of X – ray Diffraction, Reading UK, Addison – Wesley, 1978.Google Scholar

  • [35] K.A. Michalow, E.H. Otal, D. Burnat, G. Fortunato, H. Emerich, D. Ferri, A. Heel, T. Graule, Catal. Today 209, 47 (2012).Google Scholar

  • [36] R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossrefGoogle Scholar

  • [37] S.D. Mo, W.Y. Ching, Phys. Rev. B 46, 13023 (1995).CrossrefGoogle Scholar

  • [38] H. Tang, H. Berger, P.E. Schmid, F. Levy, Solid State Commun. 92, 267 (1994).CrossrefGoogle Scholar

  • [39] M. Radecka, M. Rekas, E. Kusior, K. Zakrzewska, A. Heel, K.A. Michalow, T. Graule, J. Nanosci. Nanotechnol. 10, 1032 (2010).Google Scholar

About the article

Received: 2014-02-20

Published Online: 2015-08-03

Published in Print: 2015-06-01


Citation Information: Archives of Metallurgy and Materials, Volume 60, Issue 2, Pages 935–940, ISSN (Online) 2300-1909, DOI: https://doi.org/10.1515/amm-2015-0233.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in