Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
Online
ISSN
2300-1909
See all formats and pricing
More options …

Optimization Of Laboratory Hot Rolling Of Brittle Fe-40at.%Al-Zr-B Aluminide

OPTYMALIZACJA PROCESU WALCOWANIA NA GORĄCO ALUMINIDKU Fe-40at.%Al-Zr-B NA PODSTAWIE PRÓB LABORATORYJNYCH

I. Schindler
  • Corresponding author
  • VSB – TECHNICAL UNIVERSITY OF OSTRAVA, FACULTY OF METALLURGY AND MATERIALS ENGINEERING, 17. LISTOPADU 15, 708 33 OSTRAVA – PORUBA, CZECH REPUBLIC
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Hadasik
  • SILESIAN UNIVERSITY OF TECHNOLOGY, FACULTY OF MATERIALS ENGINEERING AND METALLURGY, KRASIŃSKIEGO 8, 40-019 KATOWICE, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Kopeček / P. Kawulok
  • VSB – TECHNICAL UNIVERSITY OF OSTRAVA, FACULTY OF METALLURGY AND MATERIALS ENGINEERING, 17. LISTOPADU 15, 708 33 OSTRAVA – PORUBA, CZECH REPUBLIC
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Fabík
  • VSB – TECHNICAL UNIVERSITY OF OSTRAVA, FACULTY OF METALLURGY AND MATERIALS ENGINEERING, 17. LISTOPADU 15, 708 33 OSTRAVA – PORUBA, CZECH REPUBLIC
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Opěla
  • VSB – TECHNICAL UNIVERSITY OF OSTRAVA, FACULTY OF METALLURGY AND MATERIALS ENGINEERING, 17. LISTOPADU 15, 708 33 OSTRAVA – PORUBA, CZECH REPUBLIC
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Rusz
  • VSB – TECHNICAL UNIVERSITY OF OSTRAVA, FACULTY OF METALLURGY AND MATERIALS ENGINEERING, 17. LISTOPADU 15, 708 33 OSTRAVA – PORUBA, CZECH REPUBLIC
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Kawulok
  • VSB – TECHNICAL UNIVERSITY OF OSTRAVA, FACULTY OF METALLURGY AND MATERIALS ENGINEERING, 17. LISTOPADU 15, 708 33 OSTRAVA – PORUBA, CZECH REPUBLIC
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Jabłońska
  • SILESIAN UNIVERSITY OF TECHNOLOGY, FACULTY OF MATERIALS ENGINEERING AND METALLURGY, KRASIŃSKIEGO 8, 40-019 KATOWICE, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-24 | DOI: https://doi.org/10.1515/amm-2015-0293

Abstract

Use of the protective steel capsules enabled to manage the laboratory hot flat rolling of the extremely brittle as-cast aluminide Fe-40at.%Al-Zr-B with the total height reduction of almost 70 %. The hot rolling parameters were optimized to obtain the best combination of deformation temperature (from 1160°C up to 1240°C) and rolling speed (from 0.14 m·s−1 to 0.53 m·s−1). The resistance against cracking and refinement of the highly heterogeneous cast microstructure were the main criteria. Both experiments and mathematical simulations based on FEM demonstrated that it is not possible to exploit enhanced plasticity of the investigated alloy at low strain rates in the hot rolling process. The heat flux from the sample to the working rolls is so intensive at low rolling speed that even the protective capsule does not prevent massive appearance of the surface transverse cracking. The homogeneity and size of product’s grain was influenced significantly by temperature of deformation, whereas the effect of rolling speed was relatively negligible. The optimal forming parameters were found as rolling temperature 1200°C and the rolling speed 0.35 m·s−1. The effective technology of the iron aluminide Fe-40at.% Al-Zr-B preparation by simple processes of melting, casting and hot rolling was thus established and optimized.

Zastosowanie ochronnych stalowych kapsuł pozwoliło na przeprowadzenie laboratoryjnego walcowania na gorąco pasm z niezwykle kruchego odlewanego aluminidku żelaza (stopu na osnowie fazy międzymetalicznej) Fe-40at.%Al-Zr-B, które umożliwiło redukcję wysokości o prawie 70%. Parametry walcowania na gorąco były dostosowywane celem uzyskania korzystnego zakresu temperatury odkształcenia (od 1160°C do 1240°C) oraz prędkości walcowania (od 0.14 m·s−1 do 0.53 m·s−1) dla otrzymania pasma bez pęknięć i rozdrobnienia silnie niejednorodnej mikrostruktury odlewu. Zarówno eksperymenty jak i matematyczne symulacje oparte na MES wykazały, że niemożliwe jest uzyskanie dobrej plastyczności badanego stopu przy niskich prędkościach odkształcenia podczas walcowania na gorąco. Strumień ciepła płynący z próbki na walce jest tak intensywny przy małej prędkości walcowania, że nawet kapsuła ochronna nie zapobiega pojawieniu się powierzchniowych pęknięć poprzecznych. Jednorodność i rozmiar ziarn w materiale silnie zależy od temperatury odkształcenia, podczas gdy wpływ prędkości walcowania jest relatywnie niewielki. Optymalne parametry kształtowania stopu to: temperatura 1200°C oraz prędkość walcowania 0.35 m·s−1. Skuteczna technologia przygotowania aluminidku żelaza Fe-40at.%Al-Zr-B w prostym procesie topienia, odlewania i walcowania na gorąco została w ten sposób ustalona i zoptymalizowana.

Keywords: iron aluminides; as-cast structure; low plasticity; hot rolling; recrystallization; EBSD analysis; grain size; FEM simulation

REFERENCES

  • [1] D.G Morris, M.A. Muñoz-Morris, Recent Developments Toward the Application of Iron Aluminides in Fossil Fuel Technologies. Advanced Engineering Materials 13, 1-2, 43-47, (2011).Web of ScienceCrossrefGoogle Scholar

  • [2] N.S. Stoloff, C.T. Liu, S.C. Deevi, Emerging applications of intermetallics. Intermetallics 8, 9-11, 1313-1320, (2000).CrossrefGoogle Scholar

  • [3] R. Balasubramaniam, On the role of chromium in minimizing room temperature hydrogen embrittlement in iron aluminides. Scripta Materialia, 34, 1, 127-133 (1996).CrossrefGoogle Scholar

  • [4] M. Jabłońska, A. Jasik, A. Hanc, Structure and some mechanical properties of Fe(3)al-based cast alloys. Archives of metallurgy and materials, 54, 3, 731-739 (2009).Google Scholar

  • [5] M. Jabłońska, A. Hanc, A. Szostak, A study of point defects in the B2-phase region of the Fe-Al system by Mossbauer spectroscopy. Solid State Phenomena 163, 299-302 (2010).Google Scholar

  • [6] P. Haušild, M. Karlík, V. Šíma, D.T.L. Alexander, Microstructure and mechanical properties of hot rolled Fe–40 at.% Al intermetallic alloys with Zr and B addition. Materials Science and Technology 27, 9, 1448-1452 (2011).CrossrefGoogle Scholar

  • [7] I. Baker, P. Munroe, Mechanical properties of FeAl. International Materials Reviews. 42, 5, 181-205 (1997).CrossrefGoogle Scholar

  • [8] I. Schindler, M. Šula, Application for the patent PV 2008-301, 2008 (Czech Patent and Trademark Office).Google Scholar

  • [9] I. Schindler, I. Kratochvíl, P. Prokopčáková, P. Kozelský, Forming of cast Fe – 45 at.% Al alloy with high content of carbon. Intermetallics 18, 4, 745-747 (2010).CrossrefWeb of ScienceGoogle Scholar

  • [10] I. Schindler, K. Konečná, H. Kulveitová, J. Kopeček, M. Jarošová, P. Hanus, V. Šíma, M. Cagala, P. Kozelský, M. Legerski, P. Kawulok, S. Rusz, V. Šumšal, Hot Rolling of Brittle Fe-40at.% Al Type Alloy. Hutnické listy 63, 6, 26-31 (2010)Google Scholar

  • [11] S. Jozwiak, K. Karczewski, Z. Bojar, The effect of loading mode changes during the sintering process on the mechanical properties of FeAl intermetallic sinters. Intermetallics 33, 99-104 (2013)Google Scholar

  • [12] M.R. Hajaligol, S.C. Deevi, V.K. Sikka, C.R. Scorey, Thermomechanical process to make iron aluminide (FeAl) sheet. Materials Science and Engineering A258, 1-2, 249-257 (1998)Google Scholar

  • [13] V. Šíma, P. Kratochvíl, P. Kozelský, I. Schindler, P. Hána, FeAl-based alloys cast in an ultra-sound field. International Journal of Materials Research 100, 3, 382-385 (2009)CrossrefGoogle Scholar

  • [14] M.B. Jabłońska, M. Mikuśkiewicz, A. Śmiglewicz; et al. Study of Phase Transformation in Alloys of the Al-Fe System. Defect and Diffusion Forum, 326-328, 573-577, (2011), Diffusion in solids and liquids VII Book Series: 7th International Conference on Diffusion in Solids and Liquids (DSL 2011), Edited by: Oechsner, A; Murch, GE; Shokuhfar, A; et al.Google Scholar

  • [15] I. Schindler, V. Šumšal, M. Cagala, H. Kulveitová, M. Knapiński, Determination of activation energy in hot forming of alloy Fe-40Al type. In: METAL 2011, Conference Proceedings. Ostrava: Tanger Ltd, 2011, s. 343-349.Google Scholar

  • [16] D. Kuc, G. Niewielski, I. Bednarczyk, Structure and plasticity in hot deformed FeAl intermetallic phase base alloy. Materials Characterization 60, 1185-1189 (2009)Web of ScienceGoogle Scholar

  • [17] D. Kuc, G. Niewielski, J. Gawąd, The Influence of Deformation Conditions on Structure of Fe-Al Intermetallic Phase Based Alloys. Materials Science Forum 638-642, 1362-1367 (2010).Google Scholar

  • [18] R.B. Sims, The Calculation of Roll Force and Torque in Hot Rolling. Proceedings of the Institution of Mechanical Engineers 168, 191 (1954).Google Scholar

  • [19] A. Hensel, T. Spittel, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie (1986).Google Scholar

  • [20] Forge 2005 – reference guide. Transvalor (2003).Google Scholar

  • [21] P. Opěla, Matematický popis deformačního odporu aluminidu železa Fe-40at.%Al za tepla. Ostrava (2013). Diploma thesis. VŠB - Technical University of Ostrava.Google Scholar

  • [22] R. Kawulok, et al. Model of Hot Deformation Resistance of The Iron Aluminide of The Type Fe-40at.%Al. In: Metal Conference Proceedings. Ostrava: Tanger Ltd, 2013, 444-449 (2013).Google Scholar

About the article

Received: 2014-10-20

Published Online: 2015-11-24

Published in Print: 2015-09-01


Citation Information: Archives of Metallurgy and Materials, ISSN (Online) 2300-1909, DOI: https://doi.org/10.1515/amm-2015-0293.

Export Citation

© 2015 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ivo Schindler, Jaromir Kopeček, Petr Kawulok, Magdalena Jabłońska, Eugeniusz Hadasik, Pawel Jóźwik, Petr Opěla, Pawel Hanus, Wojciech Polkowski, and Zbigniew Bojar
Archives of Civil and Mechanical Engineering, 2017, Volume 17, Number 4, Page 816

Comments (0)

Please log in or register to comment.
Log in