Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
Online
ISSN
2300-1909
See all formats and pricing
More options …

Mechanical Properties Of The Ceramic Open-Cell Foams Of Variable Cell Sizes

WŁASNOŚCI MECHANICZNE PIANEK CERAMICZNYCH O OTWARTYCH KOMÓRKACH I RÓŻNEJ POROWATOŚCI

Z. Nowak
  • Corresponding author
  • INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH, POLISH ACADEMY OF SCIENCES, 02-106 WARSZAWA, PAWINSKIEGO 5B, POLAND
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Nowak
  • INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH, POLISH ACADEMY OF SCIENCES, 02-106 WARSZAWA, PAWINSKIEGO 5B, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R.B. Pęcherski
  • INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH, POLISH ACADEMY OF SCIENCES, 02-106 WARSZAWA, PAWINSKIEGO 5B, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Potoczek / R.E. Śliwa
Published Online: 2015-11-24 | DOI: https://doi.org/10.1515/amm-2015-0333

Abstract

The mechanical properties and numerical model of ceramic alumina open-cell foam, which is produced by the chemical method of gelcasting with different cell sizes (porosities) are presented. Geometric characteristics of real foam samples were estimated from tomographic and scanning electron microscopy images. Using this information, numerical foam model was proposed. A good agreement between the numerical model and the results elaborated from microtomography was obtained. To simulate the deformation processes the finite element program ABAQUS was used. The main goal of this computation was to obtain macroscopic force as a function of applied vertical displacement in compression test.

As a result of numerical simulation of compression test of alumina foam for different values of porosity, the Young modulus and the strength of such foams were estimated.

W pracy określono własności mechaniczne i przedstawiono model numeryczny ceramicznej pianki korundowej (α-Al2O3) o komórkach otwartych i różnej porowatości, otrzymanej metodą żelowania spienionej zawiesiny (gelcasting). Metoda ta pozwala na tworzenia pianek zawierających różnej wielkości komórki a w konsekwencji na otrzymywanie pianek o różnej porowatości.

Wielkości charakteryzujące geometrię rzeczywistych pianek ustalono z wykorzystaniem tomograficznych obrazów 3D oraz obrazów z mikroskopu skaningowego. Informacje te wykorzystano przy opracowywaniu modelu numerycznego takiej pianki. Uzyskano model numeryczny o duż ej zgodności symulowanej mikrostruktury z obrazami otrzymanymi z mikrotomografu. Symulacje numeryczne procesu deformacji przeprowadzono przy użyciu programu elementów skończonych ABAQUS. Z symulacji numerycznych otrzymano zmianę wielkości siły w funkcji przemieszczenia górnej powierzchni. Określono również zmianę modułu Younga oraz wytrzymałości na ściskanie pianek korundowych w funkcji porowatości.

Keywords: mechanical properties of foams; alumina open-cell foam; Young modulus; strength of alumina foams

REFERENCES

  • [1] M. Nowak, Z. Nowak, R.B. Pęcherski, M. Potoczek, R.E. Śliwa, On the reconstruction method of ceramic foam structures and the methodology of young modulus determination, Archives of Metallurgy and Materials. 58, 1219–1222 (2013).Google Scholar

  • [2] M. Potoczek. Gelcasting of alumina foams using agarose solutions, Ceramics International. 34, 661–667 (2008).Web of ScienceGoogle Scholar

  • [3] M. Potoczek. Design of the Microsturcture of Alumina Foams (in Polish), Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów (2012).Google Scholar

  • [4] F.S. Ortega, P. Sepulveda, V.C. Pandolfelli, Monomer systems for the gelcasting of foams, J. Eur. Ceram. Soc. 22, 1395–1401 (2002).CrossrefGoogle Scholar

  • [5] F.S. Ortega, F.A.O. Valenzuela, C.H. Scuracchio, V.C. Pandolfelli, Alternative gelling agents for the gelcasting of ceramic foams, J. Eur. Ceram. Soc. 23, 75–80 (2003).CrossrefGoogle Scholar

  • [6] L.J. Gibson M.F. Ashby, Cellular Solids, Structure and Properties, 2nd edition, Cambridge (1999).Google Scholar

  • [7] A.P. Roberts, E.J. Garboczi, Elastic moduli of model random three-dimensional closed-cell cellular solids, Acta Mater. 49, 189–197 (2001).CrossrefGoogle Scholar

  • [8] M. Kirca, Computational modeling of micro-cellular carbon foams, Finite Elements in Analysis and Design. 44, 45 – 52 (2007).Google Scholar

  • [9] N. Michailidis, F. Stergioudi, H. Omar, D.N. Tsipas, An image-based reconstruction of the 3D geometry of an Al open-cell foam and FEM modeling of the material response, Mechanics of Materials. 42, 142–147 (2010).Web of ScienceCrossrefGoogle Scholar

  • [10] W. Burzyński, Selected passages from Włodzimierz Burzyński doctoral dissertation Study on Material Effort Hypotheses, Engineering Transactions. 57, 185-215 (2009). Published orginally in Polish: W. Burzyński, Studium nad hipotezami wytężenia, Nakładem Akademii Nauk Technicznych, 1-192, Lwów 1928, also: W. Burzyński, Dzieła Wybrane, tom I, 67-258, PWN Warszawa 1982.Google Scholar

  • [11] W. Burzyński, Theoretical foundations of the hypotheses of material effort, Engineering Transactions. 56, No. 3, 269–305 (2008) – the English translation of the paper published in Polish, Czasopismo Techniczne. 47, 1-41 (1929). [12]Google Scholar

  • [12] T. Frąś, Z. Kowalewski, R.B. Pęcherski, A. Rusinek, Applications of Burzyński failure criteria, Part I. Isotropic materials with asymmetry of elastic range, Engng. Trans. 58 (1-2), 3-13 (2010).Google Scholar

  • [13] G. Vadillo, J. Fernandez-Saez, R.B. Pęcherski, Some applications of Burzyński yield condition in metal plasticity, Materials and Design. 32, 628-635 (2011).Google Scholar

  • [14] R.B. Pęcherski, K. Nalepka, T. Frąś, M. Nowak, Inelastic Flow and Failure of Metallic Solids. Material Effort: Study Across Scales, in: T. Łodygowski, A. Rusinek (Eds.), Constitutive Relations under Impact Loadings, Experiments, Theoretical and Numerical Aspects, Springer, 552, 245-285, CISM, Udine (2014).Google Scholar

  • [15] W.-Y. Jang, A.M. Kraynik, S. Kyriakides, On the microstructure of open-cell foams and its effect on elastic properties, Int. J. Solids Struct. 45, 1845–1875 (2008).CrossrefGoogle Scholar

  • [16] M. Nowak, Analysis of deformation and failure of ceramic foam structures in application to numerical simulation of infiltration processes of alumina foam by liquid metal, PhD thesis in Polish, IPPT PAN, Warsaw (2014).Google Scholar

  • [17] T.G. Nieh, K. Higashi, J. Wadsworth, Effect of cell morphology on the compressive properties of open-cell aluminum foams, Materials Science and Engineering. 283, 105–110 (2000).Google Scholar

  • [18] J. Zhou, P. Shrotriya, W.O. Soboyejo, Mechanisms and mechanics of compressive deformation in open-cell al foams, Mechanics of Materials. 36, 781–797 (2004).CrossrefGoogle Scholar

  • [19] N. Michailidis, F. Stergioudi, H. Omar, D.N. Tsipas, An image-based reconstruction of the 3D geometry of an al open-cell foam and fem modeling of the material response, Mechanics of Materials. 42, 142–147 (2010).Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-01-20

Published Online: 2015-11-24

Published in Print: 2015-09-01


Citation Information: Archives of Metallurgy and Materials, ISSN (Online) 2300-1909, DOI: https://doi.org/10.1515/amm-2015-0333.

Export Citation

© 2015 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zdzisław Nowak, Marcin Nowak, Ryszard Pęcherski, Marek Potoczek, and Romana Śliwa
Journal of Mechanics of Materials and Structures, 2017, Volume 12, Number 1, Page 107

Comments (0)

Please log in or register to comment.
Log in