Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
See all formats and pricing
More options …

Modelling and Analysis of Phase Transformations and Stresses in Laser Welding Process / Modelowanie I Analiza Przemian Fazowych I Naprężeń W Procesie Spawania Laserowego

W. Piekarska
  • Corresponding author
  • Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-23 | DOI: https://doi.org/10.1515/amm-2015-0454

The work concerns the numerical modelling of structural composition and stress state in steel elements welded by a laser beam. The temperature field in butt welded joint is obtained from the solution of heat transfer equation with convective term. The heat source model is developed. Latent heat of solid-liquid and liquid-gas transformations as well as latent heats of phase transformations in solid state are taken into account in the algorithm of thermal phenomena. The kinetics of phase transformations in the solid state and volume fractions of formed structures are determined using classical formulas as well as Continuous-Heating-Transformation (CHT) diagram and Continuous-Cooling-Transformation (CCT) diagram during welding. Models of phase transformations take into account the influence of thermal cycle parameters on the kinetics of phase transformations during welding. Temporary and residual stress is obtained on the basis of the solution of mechanical equilibrium equations in a rate form. Plastic strain is determined using non-isothermal plastic flow with isotropic reinforcement, obeying Huber-Misses plasticity condition. In addition to thermal and plastic strains, the model takes into account structural strain and transformation plasticity. Changing with temperature and structural composition thermophysical parameters are included into constitutive relations. Results of the prediction of structural composition and stress state in laser butt weld joint are presented.

Keywords: Phase transformations; Laser welding; Strains; Stresses; Numerical simulations


  • [1] Y.C. Kim, M. Hirohata, K. Inose, Welding in the World, no 3, 64 (2012).Google Scholar

  • [2] T.L. Chen, Y.H. Guan, H.G. Wang, J.T. Zhang, J Mater Process Tech. 63, 546 (1997).CrossrefGoogle Scholar

  • [3] B. Chen, X.H. Peng, S.N. Nong, X.C. Liang, J Mater Process Tech. 122, 208 (2002).Google Scholar

  • [4] A.P. Mackwood, R.C. Cafer, Opt Laser Technol. 37, 99 (2005).CrossrefGoogle Scholar

  • [5] D. Gery, H. Long, P. Maropoulos, J Mater Process Tech. 167, 393 (2005).Google Scholar

  • [6] W. Zhang, B. Wood, T. DebRoy, et al., Acta Mater. 51, 3333 (2003).Google Scholar

  • [7] W.S. Chang, S.J. Na, J Mater Process Tech. 120, 208 (2002).Google Scholar

  • [8] H. Huang, J. Wang, L. Li, N. Ma, J Mater Process Tech. 227, 117 (2016).Google Scholar

  • [9] W. Tan, Y.C. Shin, Comp Mater Sci. 98, 446 (2015).CrossrefGoogle Scholar

  • [10] A. Franco, L. Romoli, A. Musacchio, Int J Therm Sci. 79, 194 (2014).Google Scholar

  • [11] F. Nagela, F. Simon, B. Kummel, J.P. Bergmanna, J. Hildebrand, Phys Proc. 56, 1242 (2014).CrossrefGoogle Scholar

  • [12] C. Garcia de Andres, F.G. Caballero, C. Capdevila, L.F. Alvarez, Materials Characterization, 48, 101 (2002).Google Scholar

  • [13] S.A. Tsirkas, P. Papanikos, Th. Kermanidis, J Mater Process Tech. 134, 59 (2003).Google Scholar

  • [14] K. Fanrong, M. Junjie, K. Radovan, J Mater Process Tech. 211, 1102 (2011).Google Scholar

  • [15] W. Piekarska, Analiza numeryczna zjawisk termomechanicznych procesu spawania laserowego, Częstochowa, (2007).Google Scholar

  • [16] M.E. Le Guen, R. Fabbri, F. Coste, Ph. Le Masson, J Heat Mass Trans. 54, 1313 (2011).Google Scholar

  • [17] N. Ma, L. Li, H. Huang, S. Chang, H. Murakawa, J Mater Process Tech. 220, 36 (2015).Google Scholar

  • [18] L. Han, F.W. Liou, Int J Heat Mass Trans. 47, 4385 (2004).Google Scholar

  • [19] X. Jin, L. Li, Y. Zhang, J Phys. D: Appl Phys. 35, 2304 (2002).CrossrefGoogle Scholar

  • [20] D.V Bedenko, O.B Kovalev, I.V. Krivtsun, J Phys D: Appl Phys. 43, 1055 (2010).CrossrefGoogle Scholar

  • [21] M. Beck, P. Berger, H. Hugel, J Phys D: Appl Phys. 28, 2430 (1995).CrossrefGoogle Scholar

  • [22] M. Dal, R. Fabbro, An overview of the state of art in laser welding simulation, Opt Laser Technol. (2015).Google Scholar

  • [23] W. Piekarska, M. Kubiak, Z. Saternus, Arch Metall Mater. 58 (4), 1391 (2013).Google Scholar

  • [24] J. Pilarczyk, M. Banasik, J. Stano, Przeglad Spawalnictwa, 5-6, 6 (2006).Google Scholar

  • [25] C.F. Berkhout, P.H. van Lent, Schweißen und Schneiden. 6, 256 (1968).Google Scholar

  • [26] M.H. Sorsorov, Fazovye prevrascenia i izmenenia svojstv stali pri svarke, isd. Nauka, Moskva, (1972).Google Scholar

  • [27] K. Röhrs, V. Michailow, H. Wohlfahrt, Proc. of Int. Conference Mathematical Modelling and Information Technologies in Welding and Related Processes, Katsiveli, Crimea, Ukraine, ed. V.I. Makhnenko, E.O. Paton Welding Inst. of NAS of Ukraine, Kiev, 92 (2002).Google Scholar

  • [28] J. Słania, Arch Metall Mater. 3, 757 (2005).Google Scholar

  • [29] L. Taleb, F. Sidoroff, Int J Plasticity. 19, 1821 (2003).CrossrefGoogle Scholar

  • [30] A. Bokota, T. Domański, Arch Metall Mater. Issue 2, 52, 277 (2007).Google Scholar

  • [31] M. Dalgic, G. Löwisch, Mat.-wiss. u. Werkstofftech. 37, 1, 122 (2006).Google Scholar

  • [32] D.Y. Ju, W.M. Zhang, Y. Zhang, Mat Sci Eng A 438-440, 246 (2006).Google Scholar

  • [33] K.J. Lee, Scripta Mater. 40, 735 (1999).CrossrefGoogle Scholar

  • [34] S. Serajzadeh, J Mater Process Tech. 146, 311 (2004).Google Scholar

  • [35] W. Piekarska, M. Kubiak, A. Bokota, Arch Metall Mater. 56, 409 (2011).Google Scholar

  • [36] M.J. Avrami; Chem. Phys., 7, 1103-1112 (1939) Atlas of Time -Temperature Diagrams for Irons and Steels, ed. V. Voort G. F., USA, ASM International, USA, (1991).Google Scholar

  • [37] D.P. Koistinen, R.E. Marburger, Acta Metall. 7, 59 (1959).CrossrefGoogle Scholar

  • [38] O.C. Zienkiewicz, R.L. Taylor, Butterworth-Heinemann, Fifth edition, vol. 1,2,3, (2000).Google Scholar

  • [39] V.I. Makhnenko, E.A. Velikoivanenko, O.V. Makhnenko, G.F. Rozynka, N.I., Avtomaticeskaja svarka. 5, 3 (2000).Google Scholar

  • [40] M. Coret, A. Combescure, Int J Mech Sci. 44, 1947 (2002). CrossrefGoogle Scholar

About the article

Received: 2015-04-20

Published Online: 2016-01-23

Published in Print: 2015-12-01

Citation Information: Archives of Metallurgy and Materials, Volume 60, Issue 4, Pages 2833–2842, ISSN (Online) 2300-1909, DOI: https://doi.org/10.1515/amm-2015-0454.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in