Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
Online
ISSN
2300-1909
See all formats and pricing
More options …

Effect of Zr Purity and Oxygen Content on the Structure and Mechanical Properties of Melt-Spun and Suction-Cast Cu46Zr42Al7Y5 Alloy

T. Kozieł
  • Corresponding author
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, 30 MICKIEWICZA AL., 30-059 KRAKOW, POLAND
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Latuch
  • WARSAW UNIVERSITY OF TECHNOLOGY, FACULTY OF MATERIALS SCIENCE AND ENGINEERING, 141 WOŁOSKA STR., 02-507 WARSAW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Cios
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, ACADEMIC CENTRE FOR MATERIALS AND NANOTECHNOLOGY, 30 MICKIEWICZA AL., 30-059 KRAKOW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Bała
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, 30 MICKIEWICZA AL., 30-059 KRAKOW, POLAND
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, ACADEMIC CENTRE FOR MATERIALS AND NANOTECHNOLOGY, 30 MICKIEWICZA AL., 30-059 KRAKOW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-01 | DOI: https://doi.org/10.1515/amm-2016-0201

Abstract

The effect of oxygen content in zirconium on the structure and mechanical properties of the Cu46Zr42Al7Y5 alloy, in the form of melt-spun ribbons and suction-cast rods, was investigated. Two types of Zr, rod and crystal bar of different nominal purities and oxygen contents, were used to synthesize the alloy by arc melting. Rapidly solidified ribbons were produced by melt spinning and their amorphous structures were confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). Bulk samples in the form of rods were cast using a special water-cooled suction casting unit attached to the arc melting system. XRD and DSC studies proved the amorphous structure of the bulk alloy synthesized from low-oxygen Zr and partial crystallization of the same alloy for high-oxygen Zr. In both bulk samples, uniformly distributed crystalline particles were identified as yttrium oxides. Higher mean compressive strength of amorphous alloy was observed. The hardness of amorphous phase was close to 500 HV1 in both bulk alloys, while the hardness of crystalline dendritic areas, observed in the alloy synthesized from high oxygen Zr, was lower by about 50 HV1.

Keywords: metallic glasses; bulk metallic glasses; melt spinning; suction casting

References

  • [1] A. Inoue, A. Takeuchi, Acta Mater. 59, 2243 (2011).CrossrefGoogle Scholar

  • [2] J. Latuch, P. Krzesniak, T. Kulik, J. Alloy Compd. 483, 47 (2009).Google Scholar

  • [3] A. Inoue, X. Wang, W. Zhang, Rev. Adv. Mater. Sci. 18, 1 (2008).Google Scholar

  • [4] C.L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, J. Xu, Scripta Mater. 54, 1403 (2006).CrossrefGoogle Scholar

  • [5] B.W. Zhou, X.G. Zhang, W. Zhang, H. Kimura, T. Zhang, A. Makino, A. Inoue, Mater. Trans. JIM 51, 826 (2010).CrossrefGoogle Scholar

  • [6] M.W. Chen, A. Inoue, T. Sakurai, D.H. Ping, K. Hono, Appl. Phys. Lett. 74, 812 (1999).CrossrefGoogle Scholar

  • [7] T.B. Massalski, H. Okamoto, P.R. Subramaniam, L. Kacprzak, ASM Int. 3, 1990.Google Scholar

  • [8] A. Gebert, J. Eckert, L. Schultz, Acta Mater. 46, 5475 (1998).CrossrefGoogle Scholar

  • [9] D.V. Louzguine-Luzgin, C. Suryanarayana, T. Saito, Q.S. Zhang, N. Chen, J. Saida, A. Inoue, Intermetallics 18, 1531 (2010).CrossrefGoogle Scholar

  • [10] C.T. Liu, M.F. Chisholm, M.K. Miller, Intermetallics 10, 1105 (2002).CrossrefGoogle Scholar

  • [11] M.L. Vaillant, T. Gloriant, I. Thibon, A. Guillou, V. Keryvin, T. Rouxel, D. Ansel, Scripta Mater. 49, 1139 (2003).CrossrefGoogle Scholar

  • [12] X.H. Lin, W.L. Johnson, W.K. Rhim, Mater. Trans. JIM 38, 473 (1997).CrossrefGoogle Scholar

  • [13] W.H. Wang, Prog. Mater. Sci. 52, 540 (2007).CrossrefGoogle Scholar

  • [14] L. Deng, B. Zhou, H. Yang, X. Jiang, B. Jiang, X. Zhang, J. Alloy Compd. 632, 429 (2015).CrossrefGoogle Scholar

  • [15] A.A. Kündig, D. Lepori, A.J. Perry, S. Rossmann, A. Blatter, A. Dommann, P.J. Uggowitzer, Mater. Trans. JIM 43, 3206 (2002).CrossrefGoogle Scholar

  • [16] J. Luo, H. Duan, C. Ma, S. Pang, T. Zhang, Mater. Trans. JIM 47, 450 (2006).CrossrefGoogle Scholar

  • [17] Y.X. Wang, H. Yang, G. Lim, Y. Li, Scripta Mater. 62, 682 (2010).CrossrefGoogle Scholar

  • [18] J.L. Cheng, G. Chen, Z.W. Zhang, Z.Z. Wang, Z.Y. Wang, X.Q. Li, Intermetallics 49, 149 (2014).CrossrefGoogle Scholar

  • [19] J.L. Cheng, G. Chen, C.T. Liu, Y. Li, Scientific Reports 3, 2097 (2013).Google Scholar

  • [20] J. Cheng, G. Chen, Mater. Lett. 118, 169 (2014).CrossrefGoogle Scholar

  • [21] K. Ziewiec, Z. Kędzierski, A. Zielińska-Lipiec, J. Stępiński, S. Kąc, J. Alloy Compd. 482, 114 (2009).CrossrefGoogle Scholar

  • [22] K. Górecki, P. Bała, G. Cios, T. Kozieł, M. Stępień, K. Wieczerzak, Metal. Mater. Trans. A 47A, 3257 (2016).CrossrefGoogle Scholar

  • [23] K. Wieczerzak, P. Bała, M. Stępień, G. Cios, T. Kozieł, Mater. Des. 94, 61 (2016).Google Scholar

  • [24] K.T. Park, T.H. Lee, N.C. Jo, H.H. Nersisyan, B.S. Chun, H.H. Lee, J.H. Lee, J. Nucl. Mater. 436, 130 (2013).CrossrefGoogle Scholar

  • [25] A. Inoue, S. Tsutomu, Z. Tao, Mater. Trans. JIM 36, 1420 (1995).CrossrefGoogle Scholar

  • [26] T. Kozieł, Arch. Metall. Mater. 60, 767 (2015).Google Scholar

  • [27] M. Kenisarin, V.Y. Checkhovskoy, Rev. Int. Hautes Temp. 12, 329 (1975).Google Scholar

  • [28] D. Xu, G. Duan, W.L. Johnson, Phys. Rev. Lett. 92, 24501 (2004).Google Scholar

  • [29] H.W. Xu, Y.L. Du, Y. Deng, T. Nonferr. Metal. Soc. 22, 842 (2012).Google Scholar

About the article

Published Online: 2016-07-01

Published in Print: 2016-06-01


Citation Information: Archives of Metallurgy and Materials, Volume 61, Issue 2, Pages 1215–1219, ISSN (Online) 2300-1909, DOI: https://doi.org/10.1515/amm-2016-0201.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in